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PREFACE

This book is intended for upper-division electrical engineering students studying
power system analysis and design or as a reference for practicing engineers. As a
reference, the book is written with self-study in mind. The text has grown out of
many years of teaching the subject material to students in electrical engineering at
various universities, including Michigan Technologlcal University and Milwaukee
School of Engineering.

Prerequisites for students using this text are physics and mathematics through
differential equations and a circuit course. A background in electric machines is de-
sirable, but not essential. Other required background materials, including MATLAB
and an introduction to control systems, are provided in the appendixes.

In recent years, the analysis and design of power systems have been affected
dramatically by the widespread use of personal computers. Personal computers
have become so powerful and advanced that they can be used easily to perform
steady-state and transient analysis of large interconnected power systems. Mod-
ern personal computers’ ability to provide information, ask questions, and react
to responses have enabled engineering educators to integrate computers into the
curriculum. One of the difficulties of teaching power system analysis courses is
not having a real system with which to experiment in the laboratory. Therefore,
this book is written to supplement the teaching of power system analysis with a
computer-simulated system. I developed many programs for power system analy-
sis, giving students a valuable tool that allows them to spend more time on analysis
and design of practical systems and less on programming, thereby enhancing the
learning process. The book also provides a basis for further exploration of more
advanced topics in power system analysis.

MATLAB is a matrix-based software package, which makes it ideal for power
system analysis. MATLAB, with its extensive numerical resources, can be used to
obtain numerical solutions that involve various types of vector-matrix operations.

Xv



xvi PREFACE

In addition, SIMULINK provides a highly interactive environment for simulation
of both linear and nonlinear dynamic systems. Both programs are integrated into
discussions and problems. I developed a power system toolbox containing a set
of M-files to help in typical power system analysis. In fact, all the examples and
figures in this book have been generated by MATLAB functions and the use of this
toolbox. The power system toolbox allows the student to analyze and design power
systems without having to do detailed programming. Some of the programs, such
as power flow, optimization, short-circuit, and stability analysis, were originally
developed for a mainframe computer when I worked for power system consulting
firms many years ago. These programs have been refined and modularized for inter-
active use with MATLAB for many problems related to the operation and analysis
of power systems. These software modules are versatile, allowing some of the typi-
cal problems to be solved by several methods, thus enabling students to investigate
alternative solution techniques. Furthermore, the software modules are structured
in such a way that the user may mix them for other power system analyses.

This book has more than 140 illustrative examples that use MATLAB to as-
sist in the analysis of power systems. Each example illustrates a specific concept
and usually contains a script of the MATLAB commands used for the model cre-
ation and computation. Some examples are quite elaborate, in order to bring the
practical world closer. The MATLAB M-files on the accompanying diskette can be
copied to the user’s computer and used to solve all the examples. The scripts can
also be utilized with modifications as the foundation for solving the end-of-chapter
problems.

The book is organized into 12 chapters and 3 appendixes. Each chapter be-
gins with a introduction describing the topics students will encounter. Chapter 1
is a brief overview of the development of power systems and a description of the
major components in the power system. Included is a discussion of generating sta-
tions and transmission and subtransmission networks that convey the energy from
the primary source to the load areas. Chapter 2 reviews power concepts and three-
phase systems. Typical students already will have studied much of this material.
However, this specialized topic of networks may not be included in circuit the-
ory courses, and the review here will reinforce these concepts. Before going into
system analysis, we have to model all components of electrical power systems.
Chapter 3 addresses the steady-state presentation and modeling of synchronous
machines and transformers. Also, the per unit system is presented, followed by the
one-line diagram representation of the network.

Chapter 4 discusses the parameters of a multicircuit transmission line. These
parameters are computed for the balanced system on a per phase basis. Chapter 5
thoroughly covers transmission line modeling and the performance and compensa-
tion of the transmission lines. This chapter provides the concepts and tools neces-
sary for the preliminary transmission line design. Chapter 6 presents a comprehen-
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sive coverage of the power flow solution of an interconnected power system during
normal operation. First, the commonly used iterative techniques for the solution of
nonlinear algebraic equation are discussed. Then several approaches to the solu-
tion of power flow are described. These techniques are applied to the solution of
practical systems using the developed software modules.

Chapter 7 covers some essential classical optimization of continuous func-
tions and their application to optimal dispatch of generation. The programs devel-
oped here are designed to work in synergy with the power flow programs. Chap-
ter 8 deals with synchronous machine transient analysis. The voltage equations of
the synchronous machine are first developed. These nonlinear equations are trans-
formed into linear differential equations using Park’s transformation. Analytical
solution of the transformed equations can be obtained by the Laplace transform
technique. However, MATLAB is used with ease to simulate the nonlinear differ-
ential equations of the synchronous machine directly in time-domain in matrix
form for all modes of operation. Thus students can observe the dynamic response
of the synchronous machine during short circuits and appreciate the significance
and consequence of the change of machine parameters. The ultimate objective of
this chapter is to develop simple network models of the synchronous generator for
power system fault analysis and transient stability studies.

Chapter 9 covers balanced fault analysis. The bus impedance matrix by the
building algorithms is formulated and employed for the systematic computation
of bus voltages and line currents during faults. Chapter 10 discusses methods of
symmetrical components that resolve the problem of an unbalanced circuit into
a solution of a number of balanced circuits. Included are graphical displays of
the symmetrical components transformation and some applications. The method
is applied to the unbalanced fault, which once again allows the treatment of the
problem on simple per phase basis. Algorithms have been developed to simulate
different types of unbalanced faults. The software modules developed for unbal-
anced faults include single line-to-ground fault, line-to-line fault, and double line-
to-ground fauit.

Chapter 11 covers power system stability problems. First, the dynamic be-
havior of a one-machine system due to a small disturbance is investigated, and the
analytical solution of this linearized model is obtained. MATLAB and SIMULINK
are used conveniently to simulate the system, and the model is extended to multi-
machine systems. Next, the transient stability using equal area criteria is discussed,
and the result is represented graphically, providing physical insight into the dy-
namic behavior of the machine. An introduction to nonlinear differential equations
and their numerical solutions is given. MATLAB is used to obtain the numerical so-
lution of the swing equation of a one-machine system. Simulation is also obtained
using the SIMULINK toolbox. A program compatible with the power flow pro-
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grams is developed for the transient stability analysis of the multimachine systems.

Chapter 12 is concerned with power system control and develops some of
the control schemes required to operate the power system in the steady state. Sim-
ple models of the essential components used in control systems are presented. The
automatic voltage regulator (AVR) and the load frequency control (LFC) are dis-
cussed. The automatic generation control (AGC) in single-area and multiarea sys-
tems, including tie-line power control, are analyzed. For each case, the responses
to the real power demand are obtained. The generator responses with the AVR and
various compensators, such as rate feedback and Proportional Integral Derivative
(PID) controllers, are obtained. Both AGC and AVR systems are illustrated by
several examples, and the responses are obtained using MATLAB. These analyses
are supplemented by constructing the SIMULINK block diagram, which provides
a highly interactive environment for simulation. Some basic materials of modern
control theory are discussed, including the pole-placement state feedback design
and the optimal controller designs using the linear quadratic regulator based on the
Riccati equation. These modern techniques are then applied for simulation of the
LFC systems.

Appendix A is a self-study MATLAB and SIMULINK tutorial focused on
power and control systems and coordinated with the text. Appendix B includes a
brief introduction to the fundamentals of control systems and is suitable for stu-
dents without a background in control systems. Appendix C lists all functions,
script files, and chapter examples. Answers to problems are given at the end of the
book. The instructor’s manual for this text contains the worked-out solutions for
all of the book’s problem. .

The material in the text is designed to be fully covered in a two-semester
undergraduate course sequence. The organization is flexible, allowing instructors
to select the material that best suits the requirements of a one-quarter or a one-
semester course. In a one-semester course, the first six chapters, which form the
basis for power system analysis, should be covered. The material in Chapter 2 con-
tains power concepts and three-phase systems, which are usually covered in circuit
courses. This chapter can be excluded if the students are well prepared, or it can be
used for review. Also, for students with electrical machinery background, Chapter
3 might be omitted. After the above coverage, additional material from the remain-
ing chapters may then be appropriate, depending on the syllabus requirements and
the individual preferences. One choice is to cover Chapter 7 (optimal dispatch of
generation); another choice is Chapter 9 (balanced fault). The generator reactances
required in Chapter 9 may be covered briefly from Section 8.7 without covering
Chapter 8 in its entirety.

After reading the book, students should have a good perspective of power
system analysis and an active knowledge of various numerical techniques that can
be applied to the solution of large interconnected power systems. Students should
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CHAPTER

1

THE POWER SYSTEM:
AN OVERVIEW

1.1 INTRODUCTION

Electric energy is the most popular form of energy, because it can be transported
easily at high efficiency and reasonable cost.

The first electric network in the United States was established in 1882 at the
Pearl Street Station in New York City by Thomas Edison. The station supplied
dc power for lighting the lower Manhattan area. The power was generated by dc
generators and distributed by underground cables. In the same year the first water-
wheel driven generator was installed in Appleton, Wisconsin. Within a few years
many companies were established producing energy for lighting — all operated un-
der Edison’s patents. Because of the excessive power loss, RI? at low voltage,
Edison’s companies could deliver energy only a short distance from their stations.

With the invention of the transformer (William Stanley, 1885) to raise the
level of ac voltage for transmission and distribution and the invention of the induc-
tion motor (Nikola Tesla, 1888) to replace the dc motors, the advantages of the ac
system became apparent, and made the ac system prevalent. Another advantage of
the ac system is that due to lack of commutators in the ac generators, more power
can be produced conveniently at higher voltages.
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The first single-phase ac system in the United States was at Oregon City
where power was generated by two 300 hp waterwheel turbines and transmitted
at 4 kV to Portland. Southern California Edison Company installed the first three-

phase system at 2.3 kV in 1893. Many electric companies were developed through- -

out the country. In the beginning, individual companies were operating at different
frequencies anywhere from 25 Hz to 133 Hz. But, as the need for interconnection
and parallel operation became evident, a standard frequency of 60 Hz was adopted
throughout the U.S. and Canada. Most European countries selected the 50-Hz Sys-
tem. Transmission voltages have since risen steadily, and the extra high voltage
(EHV) in commercial use is 765 KV, first put into operation in the United States in
1969.

For transmitting power over very long distances it may be more economical to
convert the EHV ac to EHV dc, transmit the power over two lines, and invert it back
to ac at the other end. Studies show that it is advantageous to consider dc lines when
the transmission distance is 500 km or more. DC lines have no reactance and are
capable of transferring more power for the same conductor size than ac lines. DC
transmission is especially advantageous when two remotely located large systems
are to be connected. The dc transmission tie line acts as an asynchronous link
between the two rigid systems eliminating the instability problem inherent in the
ac links. The main disadvantage of the dc link is the production of harmonics which
requires filtering, and a large amount of reactive power compensation required at
both ends of the line. The first -:400-kV dc line in the United States was the Pacific
Intertie, 850 miles long between Oregon and California built in 1970.

The entire continental United States is interconnected in an overall network
called the power grid. A small part of the network is federally and municipally
owned, but the bulk is privately owned. The system is divided into several geo-
graphical regions called power pools. In an interconnected system, fewer genera-
tors are required as a reserve for peak load and spinning reserve. Also, interconnec-
tion makes the energy generation and transmission more economical and reliable,
since power can readily be transferred from one area to others. At times, it may
be cheaper for a company to buy bulk power from neighboring utilities than to
produce it in one of its older plants.

1.2 ELECTRIC INDUSTRY STRUCTURE

~ The bulk generation of electricity in the United States is produced by integrated
investor-owned utilities (IOU). A small portion of power generation is federally
owned, such as the Tennessee Valley Authority and Bonneville Power Administra-
tion. Two separate levels of regulation currently regulate the United States electric
system. One is the Federal Energy Regulatory Commission (FERC), which reg-

i



1.2. ELECTRIC INDUSTRY STRUCTURE 3

ulates the price of wholesale electricity, service terms, and conditions. The other
is the Securities and Exchange Commission (SEC), which regulates the business
structure of electric utilities.

The transmission system of electric utilities in the Unites States and Canada
is interconnected into a large power grid known as the North American Power
Systems Interconnection. The power grid is divided into several pools. The pools
consist of several neighboring utilities which operate jointly to schedule genera-
tion in a cost-effective manner. A privately regulated organization called the North
American Electric Reliability Council (NERC) is responsible for maintaining sys-
tem standards and reliability. NERC works cooperatively with every provider and
distributor of power to ensure reliability. NERC coordinates its efforts with FERC
as well as other organizations such as the Edison Electric Institute (EEI). NERC
currently has four distinct electrically separated areas. These areas are the Electric

“Reliability Council of Texas (ERCOT); the Western States Coordination Council

(WSCC); the Eastern Interconnect, which includes all the states and provinces of
Canada east of the Rocky Mountains (excluding Texas), and Hydro-Quebec, which
has dc interconnects with the northeast. These electrically separate areas import
and export power to each other but are not synchronized electrically.

The electric power industry in the United States is undergoing fundamental
changes since the deregulation of the telecommunication, gas, and other indus-
tries. The generation business is rapidly becoming market-driven. This is a major
change for an industry which, until the last decade, was characterized by large,
vertically integrated monopolies. The implementation of open transmission access
has resulted in wholesale and retail markets. In the future, utilities may possibly
be divided into power generation, transmission, and retail segments. Generating
utilities would sell directly to customers instead of to local distributors. This would
eliminate the monopoly that distributors currently have. The distributors would sell
their services as electricity distributors instead of being a retailer of electricity it-
self. The retail structure of power distribution would resemble the current structure
of the telephone communication industry. The consumer would have a choice as
to from which generator they purchase power. If the entire electric power industry
were to be deregulated, final consumers could choose from generators across the
country. Power brokers and power marketers will assume a major role in this new
competitive power industry. Currently, the ability to market electricity to retail end
users exists, but only in a limited number of states in pilot programs.

Extensive efforts are being made to create a more competitive environment
for electricity markets in order to promote greater efficiency. Thus, the power in-
dustry faces many new problems, with one of the highest priority issues being
reliability, that is, bringing a steady, uninterruptable power supply to all electricity
consumers. The restructuring and deregulation of electric utilities, together with
recent progress in technology, introduce unprecedented challenges and opportuni-
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ties for power systems research and open up new opportunities to young power
engineers. ’

1.3 MODERN POWER SYSTEM

The power system of today is a complex interconnected network as shown in Figure
1.1 (page 7). A power system can be subdivided into four major parts:

e Generation
e Transmission and Subtransmission
e Distribution

e Loads

1.3.1 GENERATION

Generators — One of the essential components of power systems is the three-
phase ac generator known as synchronous generator or alternator. Synchronous
generators have two synchronously rotating fields: One field is produced by the
rotor driven at synchronous speed and excited by dc current. The other field is pro-
duced in the stator windings by the three-phase armature currents. The dc current
for the rotor windings is provided by excitation systems. In the older units, the ex-
citers are dc generators mounted on the same shaft, providing excitation through
slip rings. Today’s systems use ac generators with rotating rectifiers, known as
brushless excitation systems. The generator excitation system maintains generator
voltage and controls the reactive power flow. Because they lack the commutator,
ac generators can generate high power at high voltage, typically 30 kV. In a power
plant, the size of generators can vary from 50 MW to 1500 MW.

The source of the mechanical power, commonly known as the prime mover,
may be hydraulic turbines at waterfalls, steam turbines whose energy comes from
the burning of coal, gas and nuclear fuel, gas turbines, or occasionally internal com-

-bustion engines burning oil. The estimated installed generation capacity in 1998 for
the United States is presented in Table 1.1.

Steam turbines operate at relatively high speeds of 3600 or 1800 rpm. The
generators to which they are coupled are cylindrical rotor, two-pole for 3600 rpm or
four-pole for 1800 rpm operation. Hydraulic turbines, particularly those operating
with a low pressure, operate at low speed. Their generators are usually a salient
type rotor with many poles. In a power station several generators are operated in
parallel in the power grid to provide the total power needed. They are connected at
a common point called a bus.




1.3. MODERN POWER SYSTEM §

Today the total installed electric generating capacity is about 760,000 MW.
Assuming the United States population to be 270 million,

760 x 10°
Installed capacity per capita 370 x 10° 2815 W

To realize the significance of this figure, consider the average power of a
person to be approximately 50 W. Therefore, the power of 2815 W is equivalent to

2815 W
50 W

The annual kWh consumption in the United States is about 3, 550 x 10° kWh.
The asset of the investment for investor-owned companies is about 200 billion dol-
lars and they employ close to a half million people.

With today’s emphasis on environmental consideration and conservation of
fossil fuels, many alternate sources are considered for employing the untapped
energy sources of the sun and the earth for generation of power. Some of these
alternate sources which are being used to some extent are solar power, geothermal
power, wind power, tidal power, and biomass. The aspiration for bulk generation
of power in the future is the nuclear fusion. If nuclear fusion is harnessed economi-
cally, it would provide clean energy from an abundant source of fuel, namely water.

= 56 (power slave)

Table 1.1 Installed Generation Capacity

Type Capacity, Percent Fuel
MW

Steam Plant 478,800 63 Coal, gas, petroleum
Nuclear 106,400 14 Uranium
Hydro and pumped storage 91,200 12 Water
Gas Turbine » 60,800 8 Gas, petroleum
Combined cycle 15,200 2 Gas, petroleum
Internal Combustion 4,940 0.65 Gas, petroleum
Others 2,660 0.35 Geothermal, solar, wind
Total ) 760,000 100.00

Transformers — Another major component of a power system is the transformer.
It transfers power with very high efficiency from one level of voltage to another
level. The power transferred to the secondary is almost the same as the primary,
except for losses in the transformer, and the product VI on the secondary side is
approximately the same as the primary side. Therefore, using a step-up transformer
of turns ratio a will reduce the secondary current by a ratio of 1 /a. This will re-
duce losses in the line, which makes the transmission of power over long distances
possible.

U
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The insulation requirements and other practical design problems limit the
generated voltage to low values, usually 30 kV. Thus, step-up transformers are
used for transmission of power. At the receiving end of the transmission lines step-
down transformers are used to reduce the voltage to suitable values for distribution
or utilization. In a modern utility system, the power may undergo four or five trans-
formations between generator and ultimate user.

1.3.2 TRANSMISSION AND SUBTRANSMISSION

The purpose of an overhead transmission network is to transfer electric energy
from generating units at various locations to the distribution system which ulti-
mately supplies the load. Transmission lines also interconnect neighboring utilities
which permits not only economic dispatch of power within regions during normal
conditions, but also the transfer of power between regions during emergencies.

Standard transmission voltages are established in the United States by the
American National Standards Institute (ANSI). Transmission voltage lines operat-
ing at more than 60 kV are standardized at 69 kV, 115 kV, 138 kV, 161 kV, 230 kV,
345 kV, 500 kV, and 765 kV line-to-line. Transmission voltages above 230 kV are
usually referred to as extra-high voltage (EHV).

Figure 1.1 shows an elementary diagram of a transmission and distribution
system. High voltage transmission lines are terminated in substations, which are
called high-voltage substations, receiving substations, or primary substations. The
function of some substations is switching circuits in and out of service; they are
referred to as switching stations. At the primary substations, the voltage is stepped
down to a value more suitable for the next part of the journey toward the load. Very
large industrial customers may be served from the transmission system.

The portion of the transmission system that connects the high-voltage substa-
tions through step-down transformers to the distribution substations are called the
subtransmission network. There is no clear delineation between transmission and
subtransmission voltage levels. Typically, the subtransmission voltage level ranges
from 69 to 138 kV. Some large industrial customers may be served from the sub-
transmission system. Capacitor banks and reactor banks are usually installed in the
substations for maintaining the transmission line voltage.

1.3.3 DISTRIBUTION

The distribution system is that part which connects the distribution substations to
the consumers’ service-entrance equipment. The primary distribution lines are usu-
ally in the range of 4 to 34.5 kV and supply the load in a well-defined geographical
area. Some small industrial customers are served directly by the primary feeders.
The secondary distribution network reduces the voltage for utilization by
commercial and residential consumers. Lines and cables not exceeding a few hun-
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dred feet in length then deliver power to the individual consumers. The secondary
distribution serves most of the customers at levels of 240/120 V, single-phase,
three-wire; 208Y/120 V, three-phase, four-wire; or 480Y/277 V, three-phase, four-
wire. The power for a typical home is derived from a transformer that reduces the
primary feeder voltage to 240/120 V using a three-wire line.

Distribution systems are both overhead and underground. The growth of un-
derground distribution has been extremely rapid and as much as 70 percent of new
residential construction is served underground.

134 LOADS

Loads of power systems are divided into industrial, commercial, and residential.
Very large industrial loads may be served from the transmission system. Large
industrial loads are served directly from the subtransmission network, and small
industrial loads are served from the primary distribution network. The industrial
loads are composite loads, and induction motors form a high proportion of these
load. These composite loads are functions of voltage and frequency and form a
major part of the system load. Commercial and residential loads consist largely
of lighting, heating, and cooling. These loads are independent of frequency and
consume negligibly small reactive power.

The real power of loads are expressed in terms of kilowatts or megawatts.
The magnitude of load varies throughout the day, and power must be available to
consumers on demand.

The daily-load curve of a utility is a composite of demands made by various
classes of users. The greatest value of load during a 24-hr period is called the peak
or maximum demand. Smaller peaking generators may be commissioned to meet
the peak load that occurs for only a few hours. In order to assess the usefulness
of the generating plant the load factor is defined. The load factor is the ratio of
average load over a designated period of time to the peak load occurring in that
period. Load factors may be given for a day, a month, or a year. The yearly, or
annual load factor is the most useful since a year represents a full cycle of time.
The daily load factor is

) average load
DailyLF = ————— 11
aly peak load a.D

Multiplying the numerator and denominator of (1.1) by a time period of 24 hr, we
have

average load x 24 hr _ energy consumed during 24 hr

Daily L.F. = = 1.2
ay peak load x 24 hr peak load X 24 hr (1.2)
The annual load factor is
1
Annual LE. — total annual energy 1.3)

peak load x 8760 hr
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Generally there is diversity in the peak load between different classes of loads,
which improves the overall system load factor. In order for a power plant to operate
economically, it must have a high system load factor. Today’s typical system load
factors are in the range of 55 to 70 percent.

There are a few other factors used by utilities. Utilization factor is the ratio of
maximum demand to the installed capacity, and plant factor is the ratio of annual
energy generation to the plant capacity x 8760 hr. These factors indicate how well
the system capacity is utilized and operated.

A MATLAB function barcycle(data) is developed which obtains a plot of the
load cycle for a given interval. The demand interval and the load must be defined
by the variable data in a three-column matrix. The first two columns are ‘the de-
mand interval and the third column is the load value. The demand interval may be
minutes, hours, or months, in ascending order. Hourly intervals must be expressed
in military time. '

Example 1.1

The daily load on a power system varies as shown in Table 1.2. Use the barcycle
function to obtain a plot of the daily load curve. Using the given data compute the
average load and the daily load factor (Figure 1.2).

Table 1.2 Daily System Load

Interval, hr Load, MW

12AM. - 2AM. 6
2 - 6 5
6 -9 10
9 - 12 15
12PM. - 2PM. 12
2 -4 14
4 ~ 6 . 16
6 - 8 18
8 - 10 - 16
10 - 11 12
11 - 12AM. 6

The following commands

data=[0 2 6

2 6 5
6 9 10
9 12 15

12 14 12
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14 16 14
16 18 16
18 20 18
20 22 16
22 23 12
23 24

P = data(:,3);

Dt = data(:, 2)

W = P’xDt;

Pavg = W/sum(Dt)

Peak = max(P)

6];

- data(:

LF = Pavg/Peak*100
barcycle(data)
xlabel(’Time, hr’), ylabel(’P, MW’)

result in

18
16
14
12

4 Column array of load
,1); % Column array of demand interval

% Total energy, area under the curve
% Average load

% Peak load

% Percent load factor
% Plots the load cycle

FIGURE 1.2

Daily load cycle for Example 1.1.

Pavg
-Peak

LF
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1.4 SYSTEM PROTECTION

. In addition to generators, transformers, and transmission lines, other devices are
required for the satisfactory operation and protection of a power system. Some of
the protective devices directly connected to the circuits are called switchgear. They
include instrument transformers, circuit breakers, disconnect switches, fuses and
lightning arresters. These devices are necessary to deenergize either for normal
operation or on the occurrence of faults. The associated control equipment and
protective relays are placed on switchboard in control houses.

1.5 ENERGY CONTROL CENTER

For reliable and economical operation of the power system it is necessary to mon-
itor the entire system in a control center. The modern control center of today is
called the energy control center (ECC). Energy control centers are equipped with
on-line computers performing all signal processing through the remote acquisition
system. Computers work in a hierarchical structure to properly coordinate different
functional requirements in normal as well as emergency conditions. Every energy
control center contains a control console which consists of a visual display unit
(VDU), keyboard, and light pen. Computers may give alarms as advance warn-
ings to the operators (dispatchers) when deviation from the normal state occurs.
The dispatcher makes judgments and decisions and executes them with the aid of
a computer. Simulation tools and software packages written in high-level language
are implemented for efficient operation and reliable control of the system. This is
referred to as SCADA, an acronym for “supervisory control and data acquisition.”

1.6 COMPUTER ANALYSIS

For a power system to be practical it must be safe, reliable, and economical. Thus
many analyses must be performed to design and operate an electrical system. How-
ever, before going into system analysis we have to model all components of elec-
trical power systems. Therefore, in this text, after reviewing the concepts of power
and three-phase circuits, we will calculate the parameters of a multi-circuit trans-
mission line. Then, we will model the transmission line and look at the perfor-
mance of the transmission line. Since transformers and generators are a part of
the system, we will model these devices. Design of a power system, its operation
and expansion requires much analysis. This text presents methods of power system
analysis with the aid of a personal computer and the use of MATLAB. The MAT-
LAB environment permits a nearly direct transition from mathematical expression
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to simulation. Some of the basic analysis covered in this text are:

o Evaluation of transmission line parameters

¢ Transmission line performance and compensation
e Power flow analysis

¢ Economic scheduling of generation

e Synchronous machine transient analysis

Balanced fault

e Symmetrical components and unbalanced fault

Stability studies

o Power system control

Many MATLAB functions are developed for the above studies thus allowing
the student to concentrate on analysis and design of practical systems and spend
less time on programming.

PROBLEMS

1.1. The demand estimation is the starting point for planning the future electric
power supply. The consistency of demand growth over the years has led
to numerous attempts to fit mathematical curves to this trend. One of the
simplest curves is

P = Poea(t_tO)
where a is the average per unit growth rate, P is the demand in year ¢, and
P, is the given demand at year t.

Assume the peak power demand in the United States in 1984 is 480 GW with
an average growth rate of 3.4 percent. Using MATLAB, plot the predicated
peak demand in GW from 1984 to 1999. Estimate the peak power demand
for the year 1999.

1.2. In a certain country, the energy consumption is expected to double in 10
years. Assuming a simple exponential growth given by

P = PO eat

calculate the growth rate a.
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1.3. The annual load of a substation is given in the following table. During each
month, the power is assumed constant at an average value. Using MATLAB
and the barcycle function, obtain a plot of the annual load curve. Write the
necessary statements to find the average load and the annual load factor.

Annual System Load
Interval, month | Load, MW
January 8
February 6
March 4
April 2
May 6
June 12
July 16
August 14
September 10
October 4
November 6
December 8

A ol



CHAPTER

2

BASIC PRINCIPLES

2.1 INTRODUCTION

The concept of power is of central importance in electrical power systems and is
the main topic of this chapter. The typical student will already have studied much
of this material, and the review here will serve to reinforce the power concepts
encountered in the electric circuit theory.

In this chapter, the flow of energy in an ac circuit is investigated. By using
various trigonometric identities, the instantaneous power p(t) is resolved into two
components. A plot of these components is obtained using MATLAB to observe that
ac networks not only consume energy at an average rate, but also borrow and return
energy to its sources. This leads to the basic definitions of average power P and
reactive power (. The volt-ampere S, which is a mathematical formulation based
on the phasor forms of voltage and current, is introduced. Then the complex power
balance is demonstrated, and the transmission inefficiencies caused by loads with
low power factors are discussed and demonstrated by means of several examples.

Next, the transmission of complex power between two voltage sources is con-
sidered, and the dependency of real power on the voltage phase angle and the de-
pendency of reactive power on voltage magnitude is established. MATLAB is used
conveniently to demonstrate this idea graphically.

Finally, the balanced three-phase circuit is examined. An important property
of a balanced three-phase system is that it delivers constant power. That is, the

14
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power delivered does not fluctuate with time as in a single-phase system. For the
purpose of analysis and modeling, the per-phase equivalent circuit is developed for
the three-phase system under balanced condition.

2.2 POWER IN SINGLE-PHASE AC CIRCUITS

Figure 2.1 shows a single-phase sinusoidal voltage supplying a load.

i(t)
o
+
v(t)
o
FIGURE 2.1

Sinusoidal source supplying a load.
Let the instantaneous voltage be

v(t) = Vi cos(wt + 6,) ) 2.1)
ahd the instantaneous current be given by

i(t) = Iy, cos(wt + 6;) (2.2)

The instantaneous power p(t) delivered to the load is the product of voltage v(t)
and current i(t) given by

p(t) = v(t) i(t) = Vil cos(wt + 8,) cos(wt + 6;) (2.3)

In Example 2.1, MATLAB is used to plot the instantaneous power p(t), and the
result is shown in Figure 2.2. In studying Figure 2.2, we note that the frequency of
the instantaneous power is twice the source frequency. Also, note that it is possible
for the instantaneous power to be negative for a portion of each cycle. In a passive
network, negative power implies that energy that has been stored in inductors or
capacitors is now being extracted.

It is informative to write (2.3) in another form using the trigonometric identity

cos Acos B = —;— cos(A - B) + -;—cos(A + B) (2.4



16 2. BASIC PRINCIPLES

which results in
1
p(t) = EVmIm [cos(6y — 0;) + cos(2wt + 6, + 6;)]

= %VmIm{cos(Gv — 6;) + cos[2(wt + 9,,) — (6, — 6)]}

1
= EVmIm[cos(Gv —.0;) + cos 2(wt + 6,) cos(8, — 6;)
+sin 2(wt + 6,) sin(6, — 6;)]

The root-mean-square (rms) value of v(t) is |V| = Vi, /+/2 and the rms value of
i(t) is [I| = In/v/2 . Let @ = (6, — 6;). The above equation, in terms of the rms
values, is reduced to

p(t) = [V||I}cos 8[1 + cos 2(wt + 6,)] + |V||I| sin 8 sin 2(wt + Ov)

pr(t) px(t) (2.5)
Energy flow into Energy borrowed and
the circuit returned by the circuit

where 6 is the angle between voltage and current, or the impedance angle. 0 is
positive if the load is inductive, (i.e., current is lagging the voltage) and 8 is negative
if the load is capacitive (i.e., current is leading the voltage).

The instantaneous power has been decomposed into two components. The
first component of (2.5) is

Pr(t) = V||| cos 8 + |V||T| cos 6 cos 2(wt + 6,)] (2.6)

The second term in (2.6), which has a frequency twice that of the source, accounts
for the sinusoidal variation in the absorption of power by the resistive portion of
the load. Since the average value of this sinusoidal function is zero, the average
power delivered to the load is given by

P =|V||I|cosf 2.7

This is the power absorbed by the resistive component of the load and is also re-
ferred to as the active power or real power. The product of the rms voltage value
and the rms current value |V||I] is called the apparent power and is measured in
units of volt ampere. The product of the apparent power and the cosine of the angle
between voltage and current yields the real power. Because cos § plays a key role in
the determination of the average power, it is called power factor. When the current
lags the voltage, the power factor is considered lagging. When the current leads the
voltage, the power factor is considered leading.
The second component of (2.5)

px(t) = |V||I|sin 0 sin 2(wt + 6,) 2.8
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pulsates with twice the frequency and has an average value of zero. This compo-
nent accounts for power oscillating into and out of the load because of its reactive
element (inductive or capacitive). The amplitude of this pulsating power is called
reactive power and is designated by Q.

Q= |V||I|sin8 (2.9)

Both P and @ have the same dimension. Howeyver, in order to distinguish between
the real and the reactive power, the term “var” is used for the reactive power (var is
an acronym for the phrase “volt-ampere reactive”). For an inductive load, current is
lagging the voltage, 8 = (8, — 6;) > 0 and Q) is positive; whereas, for a capacitive
load, current is leading the voltage, 8 = (6, — ;) < 0 and Q) is negative.

A careful study of Equations (2.6) and (2.8) reveals the following character-
istics of the instantaneous power.

¢ For a pure resistor, the impedance angle is zero and the power factor is unity
(UPF), so that the apparent and real power are equal. The electric energy is
transformed into thermal energy.

o If the circuit is purely inductive, the current lags the voltage by 90° and the
average power is zero. Therefore, in a purely inductive circuit, there is no
transformation of energy from electrical to nonelectrical form. The instanta-
neous power at the terminal of a purely inductive circuit oscillates between
the circuit and the source. When p(t) is positive, energy is being stored in
the magnetic field associated with the inductive elements, and when p(t) is
negative, energy is being extracted from the magnetic fields of the inductive
elements.

o If the load is purely capacitive, the current leads the voltage by 90°, and the
average power is zero, so there is no transformation of energy from electri-
cal to nonelectrical form. In a purely capacitive circuit, the power oscillates
between the source and the electric field associated with the capacitive ele-
ments.

Example 2.1

The supply voltage in Figure 2.1 is given by v(t) = 100 coswt and the load is
inductive with impedance Z = 1.26/60° Q). Determine the expression for the
instantaneous current () and the instantaneous power p(t). Use MATLAB to plot
i(t), v(¢), p(t), pr(t), and px (t) over an interval of 0 to 2.

- 100£0°

= =80/-60° A
maz = 957600~ o0

s T
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v(t) = Vi coswt, i(t) = Iy cos(wt — 60) p(t) = v()i(t)
100 6000
50 /////, 4000
0 / 2000
~50 | 0
\/  \/
100700 200 300 400200106 200 360 400
wt, degree wt, degree
pr(t), Eq.2.6 : pz(t), Eq.2.8
4000 4000
3000 ///\\\ /// 2000 |
2000 0
1000 —2000 | \\\/// \\\,//
0 —4000

0 100 200 300 400 0 100 200 300 400
wt, degree : wt, degree

FIGURE 2.2
Instantaneous current, voltage, power, Egs. 2.6 and 2.8.

therefore

i(t) = 80 cos(wt — 60°) A
p(t) = v(t) i(t) = 8000 cos wt cos(wt — 60°) W

The following statements are used to plot the above instantaneous quantities and
the instantaneous terms given by (2.6) and (2.8).

Vm'= 100; thetav = 0; % Voltage amplitude and phase angle
Z =1.25; gama = 60; % Impedance magnitude and phase angle
thetai = thetav - gama; % Current phase angle in degree
theta = (thetav - thetai)*pi/180; % Degree to radian
Im = Vm/Z; % Current amplitude
wt = 0:.05:2%pi; % wt from 0 to 2*pi

v = Vmxcos(wt); % Instantaneous voltage
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i = Imxcos(wt + thetai*pi/180); % Instantaneous current
p = v.*xi; % Instantaneous power
V = Vm/sqrt(2); I=Im/sqrt(2); % rms voltage and current
P = VxIxcos(theta); % Average power
Q = VsIxsin(theta); % Reactive power
S =P + j*Q % Complex power
pr = Px(1 + cos(2x(wt + thetav))); % Eq. (2.6)
px = Q*sin(2*(wt + thetav)); h Eq. (2.8)
PP = Pxones(1, length(wt));%Average power of length w for plot
xline = zeros(1l, length(wt)); %generates a zero vector
wt=180/pi*wt; % converting radian to degree

subplot(2,2,1), plot(wt, v, wt,i,wt, xline), grid
title([’v(t)=Vm coswt, i(t)=Im cos(wt+’,num2str(thetai), ?)’])
~xlabel(’wt, degree’)

subplot(2,2,2), plot(wt, p, wt, xline), grid

title(Cp(t)=v(t) i(t)’),xlabel(’wt, degree’)

subplot(2,2,3), plot(wt, pr, wt, PP,wt,xline), grid
title(’pr(t) Eq. 2.6’), xlabel(’wt, degree’)

subplot(2,2,4), plot(wt, px, wt, xline), grid

title(’px(t) Eq. 2.8’), xlabel(’wt, degree’), subplot(111)

2.3 COMPLEX POWER

The rms voltage phasor of (2.1) and the rms current phasor of (2.2) shown in Fig-
ure 2.3 are

V = V|0, and I = |I|/6;

The term V I* results in

P

FIGURE 2.3
Phasor diagram and power triangle for an inductive load (lagging PF).

VI* = |V||I|£6, — 6; = |V||T|L6

PSR
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= |V|}I|cos @ + j|V||I|sin @

The above equation defines a complex quantity where its real part is the average
(real) power P and its imaginary part is the reactive power Q. Thus, the complex
power designated by S is given by

S=VI*=P+jQ (2.10)

The magnitude of S, |S| = +/P? + @2, is the apparent power; its unit is volt-
amperes and the larger units are kVA or MVA. Apparent power gives a direct indi-
cation of heating and is used as a rating unit of power equipment. Apparent power
has practical significance for an electric utility company since a utility company
must supply both average and apparent power to consumers.

The reactive power () is positive when the phase angle 6 between voltage and
current (impedance angle) is positive (i.e., when the load impedance is inductive,
and [ lags V). Q is negative when 6 is negative (i.e., when the load impedance is
capacitive and I leads V') as shown in Figure 2.4.

In working with Equation (2.10 ) it is convenient to think of P, Q, and S as
forming the sides of a right triangle as shown in Figures 2.3 and 2.4.

P
4
Q
S
FIGURE 24
Phasor diagram and power triangle for a capacitive load (leading PF).
If the load impedance is Z then
V=21 (2.11)
substituting for V' into (2.10) yields
S=VI*=ZIT* = R|I)? + j X|I|? (2.12)

From (2.12) it is evident that complex power S and impedance Z have the same
angle. Because the power triangle and the impedance triangle are similar triangles,
the impedance angle is sometimes called the power angle.

Similarly, substituting for I from (2.11) into (2.10) yields

Vv [V
=VI = =L 2.1
S=VI =7 (2.13)

L
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From (2.13), the impedance of the complex power S is given by

_ve

VA
S*

(2.14)

2.4 THE COMPLEX POWER BALANCE

From the conservation of energy, it is clear that real power supplied by the source is
equal to the sum of real powers absorbed by the load. At the same time, a balance
between the reactive power must be maintained. Thus the total complex power
delivered to the loads in parallel is the sum of the complex powers delivered to
each. Proof of this is as follows:

I L I, I3

FIGURE 2.5
Three loads in parallel.

For the three loads shown in Figure 2.5, the total complex power is given by

S=VI'=V[h+ L+ L=V} +VE+VI (2.15)

Example 2.2

In the above circuit V. = 1200£0° V, Z; = 60 + j0 2, Zs = 6 + j12 Q and
Z3 = 30 — 530 €. Find the power absorbed by each load and the total complex
power.

120020° 3
1200£0°

=" —40—

9 6+ ;12 40 — 780 A
200/0° .

= 220020° _on 420 A

30 — 430
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Sy = VI§ =1200£0°(20 — j0) = 24,000 W + 50 var
Sg = VI3 = 1200£0°(40 + 580) = 48,000 W + 596,000 var
S3 = VI3 = 1200£0°(20 — j20) = 24,000 W — 524,000 var
The total load complex power adds up to
S =81+ 82+ 53 = 96,000 W + 572,000 var

Alternatively, the sum of complex power delivered to the load can be obtained by
first finding the total current.

I=1I+ I+ I3 = (20 + j0) + (40 — 780) + (20 + j20)
= 80 — 560 = 100/—36.87° A
and
S = VI* = (1200£0°)(100/36.87°) = 120,000/36.87° VA
= 96,000 W + §72,000 var

A final insight is contained in Figure 2.6, which shows the current phasor diagram
and the complex power vector representation.

Sa
S
I3
I 1 S 1
S3
I
I
FIGURE 2.6

Current phasor diagram and power plane diagram.

The complex powers may also be obtained directly from (2.14)

IVI* _ (1200)? .
= = ~ =24 0
Sy Zr 5 ,000 W + ;5
_ VP _ (1200)* .
Sy = 7y T 6-12 48,000 W + j96,000 var
2 2
S3 = VI _ (12000 _ 24,000 W — ;24,000 var

Z3 30+ 430
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2.5 POWER FACTOR CORRECTION

It can be seen from (2.7) that the apparent power will be larger than P if the power
factor is less than 1. Thus the current I that must be supplied will be larger for
PF < 1 than it would be for PF' = 1, even though the average power P supplied
is the same in either case. A larger current cannot be supplied without additional
cost to the utility company. Thus, it is in the power company’s (and its customer’s)
best interest that major loads on the system have power factors as close to 1 as
possible. In order to maintain the power factor close to unity, power companies
install banks of capacitors throughout the network as needed. They also impose an
additional charge to industrial consumers who operate at low power factors. Since
industrial loads are inductive and have low lagging power factors, it is beneficial to
install capacitors to improve the power factor. This consideration is not important
for residential and small commercial customers because their power factors are
close to unity.

Example 2.3

Two loads Z; = 100 + j0 2 and Z3 = 10 + 520 2 are connected across a 200-V
rms, 60-Hz source as shown in Figure 2.7.

(a) Find the total real and reactive power, the power factor at the source, and the
total current.

I L I, V1.
100
200 V C_r) § 100 ¢
j200
I
]

FIGURE 2.7
Circuit for Example 2.3 and the power triangle.

_200£0°

I === =2.0° A
200/0°
= ——— = — 9 A
2= 70+ 520 4-78

Sy = VI} = 200£0°(2 — j0) = 400 W + 50 var
Sa = VI3 = 200£0°(4 + j8) = 800 W + 51600 var

e
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Total apparent power and current are

S = P+ jQ = 1200 + 51600 = 2000/53.13° VA

S*  2000£/-53.13°
= — = =1 [— 1 °
I e 20070° 0/-53.13° A

Power factor at the source is
PF = cos(53.13) = 0.6 lagging

(b) Find the capacitance of the capacitor connected across the loads to improve the
overall power factor to 0.8 lagging.

Total real power P = 1200 W at the new power factor 0.8 lagging. Therefore

9" = cos™1(0.8) = 36.87°
Q' = Ptan ¢’ = 1200tan(36.87°) = 900 var
Q. = 1600 — 900 = 700 var
VI (200)2 .
Zp= e = = —457.14 Q)
©T T8 T 00 751 ‘
6
C=_ 30"
2m(60)(57.14)

= 46.42 uF

The total power and the new current are

S’ = 1200 + 5900 = 1500/36.87°
S8 1500/-36.87°
VT 200/0°

Note the reduction in the supply current from 10 A to 7.5 A.

g = 7.5/-36.87°

Example 2.4

Three loads are connected in parallel across a 1400-V rms, 60-Hz single-phase
supply as shown in Figure 2.8.

Load 1: Inductive load, 125 kVA at 0.28 power factor.
Load 2: Capacitive load, 10 kW and 40 kvar,
Load 3: Resistive load of 15 kW.

(a) Find the total kW, kvar, kVA, and the supply power factor,
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~ Y

I I, I3

1400 V <t> 1 2 3

FIGURE 2.8
Circuit for Example 2.4.

An inductive load has a lagging power factor, the capacitive load has a lead-
ing power factor, and the resistive load has a unity power factor.

For Load 1:
61 = cos~1(0.28) = 73.74° lagging
The load complex powers are

S1 =125/73.74 kVA = 35 kW + 5120 kvar
S9 = 10 kW — 540 kvar
S3 = 15 kW + 50 kvar

The total apparent power is

S=P+jQ==5+52+5s
= (35 + §120) + (10 — j40) + (15 + 50)
= 60 kW + 580 kvar = 100/53.13 kVA

The total current is

S* _ 100,000/—53.13°
Vv 1400/0°

The supply power factor is

= 71.43/-53.13° A

PF = cos(53.13) = 0.6 lagging

(b) A capacitor of negligible resistance is connected in parallel with the above loads
to improve the power factor to 0.8 lagging. Determine the kvar rating of this ca-
pacitor and the capacitance in uF.

e i
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Total real power P = 60 kW at the new power factor of 0.8 lagging results in the
new reactive power Q’.

¢’ = cos™1(0.8) = 36.87°
Q' = 60tan(36.87°) = 45 kvar

Therefore, the required capacitor kvar is

Qc =80 —45 =35 kvar

and
V]2 14002 .
X, =YL — —j56 Q)
°= g T 35,000
108
= — 4737 4F
C= ey ~ 4T A

and the new current is

i _ 60,000 — 745,000
Ve 1400£0°
Note the reduction in the supply current from 71.43 A to 53.57 A.

I/

= 53.57/—-36.87° A

2.6 COMPLEX POWER FLOW

Consider two ideal voltage sources connected by a line of impedance Z = R +
JX € as shown in Figure 2.9.

Z=R+jX =|Z| Ly°
I

'e or

FIGURE 2.9
Two interconnected voltage sources.

Let the phasor voltage be V; = |V;|/8; and V3 = |V,|/ 8. For the assumed direc-
tion of current
_ Nlséy - |Va|L6y WA

LAY 7 RV 141 T
I, Gz IZIZ51 0% 2=
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The complex power S13 is given by

R Vil [Val
S12 = Viljy = |Vi|L& [|Z| Ly~ & Z] Ly — d9]
A ANA
= Ly — Ly + 61— 8y
1Z| |Z]

Thus, the real and reactive power at the sending end are

[ VA |Val
2= - €08y — ———=—cos(y+ 6, — & (2.16)
IZI |Z| ( 1 2)
W o vl
Q12 = ———-siny — sin(y + 6, — & 2.17)
| 1 IZI IZ' ( 1 2) ‘

Power system transmission lines have small resistance compared to the reactance.
Assuming R = 0 (i.e., Z = X /90° ), the above equations become

[Val|Va|

P12 = T sin(51 - 52) (2.18)
Vi
Qiz = ITE"I”VII — |V2| cos(81 — 62)] (2.19)

Since R = 0, there are no transmission line losses and the real power sent equals
the real power received.

From the above results, for a typical power system with small R/X ratio, the
following important observations are made :

1. Equation (2.18) shows that small changes in &; or 5 will have a significant
effect on the real power flow, while small changes in voltage magnitudes will
not have appreciable effect on the real power flow. Therefore, the flow of real
power on a transmission line is governed mainly by the angle difference of
the terminal voltages (i.e., P12 o sin § ), where § = §; — 0. If V] leads Vs,
d is positive and the real power flows from node 1 to node 2. If Vi lags Vo, 6
is negative and power flows from node 2 to node 1.

2. Assuming R = 0, the theoretical maximum power (static transmission ca-
pacity) occurs when § = 90° and the maximum power transfer is given by

I 1 “ V 2‘
P, =214 2.20
mazx X ( )
In Chapter 3 we learn that increasing 6 beyond the static transmission capac-

ity will result in loss of synchronism between the two machines.
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3. For maintaining transient stability, the power system is usually operated with
small load angle 4. Also, from (2.19) the reactive power flow is determined
by the magnitude difference of terminal voltages, (i.e., @ « |V1| — |Vz)).

Example 2.5

Two voltage sources V; = 120/—5V and V5 = 100/0 V are connected by a short
line of impedance Z = 1 + 572 as shown in Figure 2.9. Determine the real and
reactive power supplied or received by each source and the power loss in the line.

120/—5° — 100£0°

Iy = = 3.135/—-110.02° A
12 1+ 47
1000° — 120/ — 5°
Iy = ‘= 3.135/69.98° A
2 1+ 47

S12 = ViI}, = 376.2£105.02° = —97.5 W + 363.3 var
So1 = VoI = 313.5/—69.98° = 107.3 W — j294.5 var

Line loss is given by
S =81+5,=98 W + ;j68.8 var

From the above results, since P, is negative and P, is positive, source 1 receives
97.5 W, and source 2 generates 107.3 W and the real power loss in the line is 9.8
W. The real power loss in the line can be checked by

Pp = R|I15]* = (1)(3.135)2 = 9.8 W

Also, since ()1 is positive and Q3 is negative, source 1 delivers 363.3 var and source
2 receives 294.5 var, and the reactive power loss in the line is 68.6 var. The reactive
power loss in the line can be checked by

Qr = X|I2)* = (7)(3.135)2 = 68.8 var

Example 2.6

This example concerns the direction of power flow between two voltage sources.
Write a MATLAB program for the system of Example 2.5 such that the phase an-
gle of source 1 is changed from its initial value by £30° in steps of 5°. Voltage
magnitudes of the two sources and the voltage phase angle of source 2 is to be kept
constant. Compute the complex power for each source and the line loss. Tabulate

the real power and plot P; , P,, and Py, versus voltage phase angle . The following
commands
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E1 = input(’Source # 1 Voltage Mag. = ’);

al = input(’Source# 1 Phase Angle = ’);

E2 = input(’Source # 2 Voltage Mag. = ’);

a2 = input(’Source # 2 Phase Angle = ’);

R = input(’Line Resistance = ’);

X = input(’Line Reactance = ’);

Z = R + j*X; % Line impedance
al = (-30+a1:5:30+al)’; % Change al by +/- 30, col. array
alr = al*pi/180; % Convert degree to radian
k = length(al);

a2 = ones(k,1)*a2; 7 Create col. array of same length for a2
a2r = a2%pi/180; % Convert degree to radian

V1 = El.*cos(alr) + j*El.*sin(alr);

V2 = E2.%cos(a2r) + j*E2.*sin(a2r);

I12 = (V1 - V2)./Z2; 1I21=-112;

S1 = Vi.*conj(I12); P1 = real(S1); Qi = imag(S1);

S2 = V2.%conj(I21); P2 = real(S2); Q2 = imag(S2);
SL = S1+82; PL = real(SL); QL = imag(SL);
Resulti = [al, P1, P2, PL];

disp(’ Delta 1 P-1 P-2 P-L )
disp(Resultl)

plot(al, P1, ai, P2, al,PL)
xlabel(’Source #1 Voltage Phase Angle’)
ylabel(’ P, Watts’),

text(-26, -550, ’P1’), text(-26, 600,’P2’),
text (-26, 100, ’PL’)

result in
Source # 1 Voltage Mag. = 120
Source # 1 Phase Angle = -5
Source # 2 Voltage Mag. = 100
Source # 2 Phase Angle = 0
Line Resistance = 1
Line Reactance = 7
Delta i P-1 pP-2 P-L
-35.0000 -872.2049 967.0119 94.8070
-30.0000 ~-759.8461 832.15639 72.3078
-25.0000 -639.5125 692.4848 52.9723
-20.0000 -512.1201 549.0676 36.9475

~-15.0000 -378.6382 402.9938 24 .3556
-10.0000 -240.0828 255.3751 15.2923
-5.0000 -97.5084 107.3349 9.8265
0 48.0000 -40.0000 8.0000
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5.0000  195.3349 -185.5084  9.8265
10.0000  343.3751 -328.0828  15.2023
15.0000  490.9938 -466.6382  24.3556
20.0000 637.0676 -600.1201 36.9475
25.0000  780.4848 -727.5125  52.9723
1000
800 f
600 | %)
400}
P 200 | Py
Watts 0
~200}
—400|
~600 | A
—800 |
%% H T S S 0 10 20 30

Source #1 Voltage Phase Angle

FIGURE 2.10
Real power versus voltage phase angle 4.

Examination of Figure 2.10 shows that the flow of real power along the intercon-
nection is determined by the angle difference of the terminal voltages. Problem 2.9
requires the development of a similar program for demonstrating the dependency
of reactive power on the magnitude difference of terminal voltages.

2.7 BALANCED THREE-PHASE CIRCUITS

The generation, transmission and distribution of electric power is accomplished by
means of three-phase circuits. At the generating station, three sinusoidal voltages
are generated having the same amplitude but displaced in phase by 120°. This is
called a balanced source. If the generated voltages reach their peak values in the
sequentjal order ABC, the generator is said to have a positive phase sequence,
shown in Figure 2.11(a). If the phase order is ACB, the generator is said to have a
negative phase sequence, as shown in Figure 2.11(b).
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ECn EBn,

EAn EAn
EBn (a) Ec, (b)
FIGURE 2.11

(a) Positive, or ABC, phase sequence. (b) Negative, or ACB, phase sequence.

In a three-phase system, the instantaneous power delivered to the external
loads is constant rather than pulsating as it is in a single-phase circuit. Also, three-
phase motors, having constant torque, start and run much better than single-phase
motors. This feature of three-phase power, coupled with the inherent efficiency of
its transmission compared to single-phase (less wire for the same delivered power),
accounts for its universal use.

A power system has Y-connected generators and usually includes both A-
and Y-connected loads. Generators are rarely A-connected, because if the voltages
are not perfectly balanced, there will be a net voltage, and consequently a circulat-
ing current, around the A. Also, the phase voltages are lower in the Y-connected
generator, and thus less insulation is required. Figure 2.12 shows a Y-connected
generator supplying balanced Y-connected loads through a three-phase line. As-
suming a positive phase sequence (phase order ABC) the generated voltages are:

Ean = |E,|L0°
Epn = |E,|/~120° 2.21)
Ecn = |Ep|{—240°

In power systems, great care is taken to ensure that the loads of transmission lines
are balanced. For balanced loads, the terminal voltages of the generator Va,, Vi,
and Vi, and the phase voltages V,,,, V3, and V., at the load terminals are balanced.
For “phase A,” these are given by

Van = Ean — Zgl, (2.22)
Van = Van — 211, (2.23)

PR e
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FIGURE 2.12
A Y-connected generator supplying a Y-connected load.

2.8 Y-CONNECTED LOADS

To find the relationship between the line voltages (line-to-line voltages) and the
phase voltages (line-to-neutral voltages), we assume a positive, or ABC, sequence.
We arbitrarily choose the line-to-neutral voltage of the a-phase as the reference,
thus

Van = |Vp|£0°
Vin = |Vp|£—120° (2.24)
Ven = |Vpl£—240°

where |V}| represents the magnitude of the phase voltage (line-to-neutral voltage).
The line voltages at the load terminals in terms of the phase voltages are found
by the application of Kirchhoff’s voltage law

Vab = Van — Vin = [Vp[(1£0° — 1£-120°) = v/3|V,|£30°
Voe = Von — Ven = [Vp|(1£—120° — 1/-240°) = V3|V, |/—90°  (2.25)
Vea = Ven — Van = [Vp|(1£~240° — 1£0°) = /3|V,|£150°

The voltage phasor diagram of the Y-connected loads of Figure 2.12 is shown
in Figure 2.13. The relationship between the line voltages and phase voltages is
demonstrated graphically.
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Vca Vcn _ _Vab

/ /

/ /
/ /
30°
Van
Vin
Ve

FIGURE 2.13

Phasor diagram showing phase and line voltages.

If the rms value of any of the line voltages is denoted by V, then one of the
important characteristics of the Y-connected three-phase load may be expressed as

Vi = V3|V,|/30° (2.26)

Thus in the case of Y-connected loads, the magnitude of the line voltage is
+/3 times the magnitude of the phase voltage, and for a positive phase sequence,
the set of line voltages leads the set of phase voltages by 30°.

The three-phase currents in Figure 2.12 also possess three-phase symmetry
and are given by

<

IL=-2=|L|L-#6

P

5= Vi

N

= |L,|/—120° — 6 (2.27)

L= 2 = |L|—240° - 6

Sl

where 8 is the impedance phase angle.
The currents in lines are also the phase currents (the current carried by the
phase impedances). Thus

I=1, (2.28)
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2.9 A-CONNECTED LOADS

A balanced A-connected load (with equal phase impedances) is shown in Fig-
ure 2.14.

"
bk
A
FIGURE 2.14

A A-connected load.

It is clear from the inspection of the circuit that the line voltages are the same
as phase voltages.

V=V, (2.29)

Consider the phasor diagram shown in Figure 2.15, where the phase current I, is
arbitrarily chosen as reference. we have

Ly = | I, £0° |
Iye = |I,)£—120° (2.30)
Ia = |I)| £—240°

where |I,| represents the magnitude of the phase current.

I
IC(l
I
I be
FIGURE 2.15

Phasor diagram showing phase and line currents.
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The relationship between phase and line currents can be obtained by applying
Kirchhoff’s current law at the corners of A.

I = Inp — Ieq = || (1£0° — 1£—240°) = /3|I,|£—30°
Iy = Iye — Inp = |Ip|(1£~120° — 1£0°) = V/3|I,|L~150° (2.31)
Io = Iea — Ipe = |Ip|(1£—240° — 1£—120°) = /3|1, £90°

The relationship between the line currents and phase currents is demonstrated
graphically in Figure 2.15.
If the rms of any of the line currents is denoted by I, then one of the impor-
tant characteristics of the A-connected three-phase load may be expressed as

I, = V3|I,| £-30° (2.32)

Thus in the case of A-connected loads, the magnitude of the line currenf is V3
times the magnitude of the phase current, and with positive phase sequence, the set
of line currents lags the set of phase currents by 30°.

2.10 A-Y TRANSFORMATION

For analyzing network problems, it is convenient to replace the A-connected cir-
cuit with an equivalent Y-connected circuit. Consider the fictitious Y-connected
circuit of Zy (Y/phase which is equivalent to a balanced A-connected circuit of
Zp Qphase, as shown in Figure 2.16.

a
I,
n
co I, I b
(b)
FIGURE 2.16
(a) A to (b) Y-connection.

For the A-connected circuit, the phase current I, is given by

Vo, Vao _ Y+ Vae

I, = =
T Za ZA ZA

(2.33)

o e
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FIGURE 2.17
Phasor diagram showing phase and line voltages.

The phasor diagram in Figure 2.17 shows the relationship between balanced phase
and line-to-line voltages. From this phasor diagram, we find

Vab + Vae = V3 |Van | £30° + V/3 [V | £~30° (2.34)
=3Ven (2.35)

Substituting in (2.33), we get

3Van
I _ "
a Zn
or
Z
Van = —3310 (2.36)

Now, for the Y-connected circuit, we have
Van = ZYIG. (2.37)

Thus, from (2.36) and (2.37), we find that

Zy = % (2.38)

211 PER-PHASE ANALYSIS

The current in the neutral of the balanced Y-connected loads shown in Figure 2.12
is given by
Ln=1,+L+1.,=0 (2.39)
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Since the neutral carries no current, a neutral wire of any impedance may be re-
placed by any other impedance, including a short circuit and an open circuit. The
return line may not actually exist, but regardless, a line of zero impedance is in-
cluded between the two neutral points. The balanced power system problems are
then solved on a “per-phase” basis. It is understood that the other two phases carry
identical currents except for the phase shift.

We may then look at only one phase, say “phase A,” consisting of the source
Van in series with Z7, and Z,, as shown in Figure 2.18. The neutral is taken as
datum and usually a single-subscript notation is used for phase voltages.

VA I a ZL Va

=

FIGURE 2.18
Single-phase circuit for per-phase analysis.

If the load in a three-phase circuit is connected in a A, it can be transformed
into a Y by using the A-to-Y transformation. When the load is balanced, the
impedance of each leg of the Y is one-third the impedance of each leg of the A, as
given by (2.38), and the circuit is modeled by the single-phase equivalent circuit.

2.12 BALANCED THREE-PHASE POWER

Consider a balanced three-phase source supplying a balanced Y- or A- connected
load with the following instantaneous voltages

Van = V2| Vp| cos(wt + 6)
Upn = V2|Vj| cos(wt + 6, — 120°) (2.40)
Ven = V2|V, cos(wt + 6, — 240°)
For a balanced load the phase currents are
ia = V2|Ip| cos(wt + 6;)
ib = V2| Iy| cos(wt + 6; — 120°) - (241)
ie = V2|I| cos(wt + 8; — 240°)
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where |V;| and |Ip| are the magnitudes of the rms phase voltage and current, re-
spectively. The total instantaneous power is the sum of the instantaneous power of
each phase, given by

P3¢ = Vanta + Upnip + Venlc (2.42)
Substituting for the instantaneous voltages and currents from (2.40) and (2.41) into
(2.42)

P3p = 2|Vp||I,| cos(wt + 8,) cos(wt + 6;)
+2|Vp||Ip| cos(wt + 8, — 120°) cos(wt + §; — 120°)
+2|V}||Ip| cos(wt + 8, — 240°) cos(wt + 8; ~ 240°)

Using the trigonometric identity (2.4)

p3p = |VpllIp|[cos(6y — 6;) + cos(2wt + 6, + 6;)]
+VollIpl[cos(6, — 6;) + cos(2wt + 6, + 0; — 240°)]  (2.43)
+|Voll Il [cos(8, — 8;) + cos(2wt + 6, + 6; — 480°)]

The three double frequency cosine terms in (2.43) are out of phase with each other
by 120° and add up to zero, and the three-phase instantaneous power is

P3g = 3|Vp||Ip| cos 6 (2.44)

0 = 6, — 0; is the angle between phase voltage and phase current or the impedance
angle. )

Note that although the power in each phase is pulsating, the total instanta-
neous power is constant and equal to three times the real power in each phase. In-
deed, this constant power is the main advantage of the three-phase system over the
single-phase system. Since the power in each phase is pulsating, the power, then,
is made up of the real power and the reactive power. In order to obtain formula
symmetry between real and reactive powers, the concept of complex or apparent
power (S) is extended to three-phase systems by defining the three-phase reactive
power as

Q3¢ = 3|Vp”Ip| sin @ (2.45)
Thus, the complex three-phase power is
S3¢ = Py + jQ3¢ (2.46)
or
S3p = 3VpI; (2.47)

Equations (2.44) and (2.45) are sometimes expressed in terms of the rms
magnitude of the line voltage and the rms magnitude of the line current. In a Y-
connected load the phase voltage |V;| = [VL|/+/3 and the phase current I, = Ir.
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In the A-connection V,, = V7, and |I,| = |IL|/+/3. Substituting for the phase volt-
age and phase currents in (2.44) and (2.45), the real and reactive powers for either
connection are given by

P3s = V/3|Vi||IL| cos 6 (2.48)

and
Q34 = V3|VL||IL|sin 8 (2.49)

A comparison of the last two expressions with (2.44) and (2.45) shows that the
equation for the power in a three-phase system is the same for either a Y ora A
connection when the power is expressed in terms of line quantities.

When using (2.48) and (2.49) to calculate the total real and reactive power,
remember that @ is the phase angle between the phase voltage and the phase current.
As in the case of single-phase systems for the computation of power, it is best to
use the complex power expression in terms of phase quantities given by (2.47).
The rated power is customarily given for the three-phase and rated voltage is the
line-to-line voltage. Thus, in using the per-phase equivalent circuit, care must be
taken to use per-phase voltage by dividing the rated voltage by /3.

Example 2.7

A three-phase line has an impedance of 2 + j4 (2 as shown in Figure 2.19.

24540
@ o AN

a
Vil = 207.85V
bl il = 20785V b/“»/ilfson
\//\N-gzlsﬂ
C o AAAN~YT e [

300
7409

n

FIGURE 2.19
Three-phase circuit diagram for Example 2.7.

The line feeds two balanced three-phase loads that are connected in parallel. The
first load is Y-connected and has an impedance of 30+ 3740 €2 per phase. The second
load is A-connected and has an impedance of 60 — 545 €. The line is energized
at the sending end from a three-phase balanced supply of line voltage 207.85 V.
Taking the phase voltage V, as reference, determine:

(a) The current, real power, and reactive power drawn from the supply.
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(b) The line voltage at the combined loads.
(c) The current per phase in each load.
(d) The total real and reactive powers in each load and the line.

(a) The A-connected load is transformed into an equivalent Y. The impedance per
phase of the equivalent Y is -

60— j45

Zs 3 =20-3415 Q
The phase voltage is
- 207.85
i = =120V
SRVE
The single-phase equivalent circuit is shown in Figure 2.20.
I 2+ 74Q
a o—_._>.._I\NV\I_JWY\
Ty I
30Q 2092
Vi =120£0°V Va i

74082 ———j15Q
7 o —
FIGURE 2.20

Single-phase equivalent circuit for Example 2.7.

The total impedance is
(30 + 740)(20 — j15)

(30 + 740) + (20 — ;15)
=24 j4+22—j4=24Q

Z=2+j4+

With the phase voltage V;,, as reference, the current in phase a is
_ Vi 120/0°
Tz 4
The three-phase power supplied is

S = 3V I* = 3(120£0°)(5£0°) = 1800 W

I 5 A

(b) The phase voltage at the load terminal is

Vp = 120£0° — (2 + 54)(5£0°) = 110 — j20
=111.8/-10.3° V
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The line voltage at the load terminal is
Vaab = V3 £30° Vo = v/3 (111.8)/19.7° = 193.64/19.7° V

(c) The current per phase in the Y-connected load and in the equivalent Y of the A
load is

V, 110 — j20 .
=2 LTI 9 =92936/ — 63.4° A
Y= 7 T 30+ j40 J 6
Vo 110 — j20 .
L= 22 = = 7920 44 50 = 4.472/26.56° A
2= 7 = 955 =4+ 72 72/26.56

The phase current in the original A-connected load, i.e., I, is given by

;oo B 44712/%56°
O B30 /3/—30°

(d) The three-phase power absorbed by each load is

= 2.582/56.56° A

.

Sy = 3VaI} = 3(111.8/ — 10.3°)(2.236£63.4°) = 450 W + 5600 var
Sy = 3VoI} = 3(111.8/ — 10.3°)(4.472/—26.56°) = 1200 W — 5900 var

—

The three-pixase power absorbed by the line is
St =3(Rr +jXL)|I> = 3(2 + j4)(5)% = 150 W + 5300 var

It is clear that the sum of load powers and line losses is equal to the power delivered
from the supply, i.e.,

S1+ 52 + S = (450 + 5600) + (1200 — 5900) + (150 + 5300)
= 1800 W + 50 var

Example 2.8

A three-phase line has an impedance of 0.4 + 72.7 ) per phase. The line feeds two
balanced three-phase loads that are connected in parallel. The first load is absorb-
ing 560.1 kVA at 0.707 power factor lagging. The second load absorbs 132 kW at
unity power factor. The line-to-line voltage at the load end of the line is 3810.5 V.
Determine:

(a) The magnitude of the line voltage at the source end of the line.
(b) Total real and reactive power loss in the line.
(c) Real power and reactive power supplied at the sending end of the line.
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7 0445270
T AAAATYTYT
“ + 1L I
Vi Vo = 2200/0°
no -
FIGURE 2.21

Single-phase equivalent diagram for Example 2.8.

(a) The phase voltage at the load terminals is

3810.5
Vo=—=2200V
2 \/g ‘

The single-phase equivalent circuit is shown in Figure 2.21.
The total complex power is

Sr(ag) = 560.1(0.707 + 50.707) + 132 = 528 + 5396
= 660/36.87° kVA

With the phase voltage V5 as reference, the current in the line is

Shes) _ 660,000/ —36.87°
3V 3(220020°)

The phase voltage at the sending end is

I= = 100/-36.87° A

V1 = 2200£0° + (0.4 + 52.7)100/—36.87° = 2401.7/4.58° V
The magnitude of the line voltage at the sending end of the line is
[ViLl = V3|Vi| = V3(2401.7) = 4160 V
(b) The three-phase power loss in the line is

Stig) = 3RII|* + j3X1|% = 3(0.4)(100)2 + j3(2.7)(100)?
=12 kW + 581 kvar

(c) The three-phase sending power is

Ss3¢) = 3V1I* = 3(2401.7£4.58°)(100/36.87°) = 540 kW + j477 kvar

It is clear that the sum of load powers and the line losses is equal to the power

delivered from the supply, i.e.,

Ss(a¢) = Sr(3¢) + Spag) = (528 + 5396) + (12 + j81) = 540 kW + 5477 kvar

ek
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PROBLEMS

2.1. Modify the program in Example 2.1 such that the following quantities can
be entered by the user:
The peak amplitude V;,, and the phase angle 8, of the sinusoidal supply
v(t) = Vp, cos(wt + 6,). The impedance magnitude Z, and the phase angle
«y of the load.
The program should produce plots for i(t), v(t), p(t), pr(t) and p,(t), sim-
ilar to Example 2.1. Run the program for V,, = 100 V, 8, = 0 and the
following loads:

An inductive load, Z = 1.25/60°Q
A capacitive load, Z = 2.0/-30°Q
A resistive load, Z = 2.5/0°)

(a) From p,(t) and p,(t) plots, estimate the real and reactive power for each
load. Draw a conclusion regarding the sign of reactive power for inductive
and capacitive loads.

(b) Using phasor values of current and voltage, calculate the real and reactive
power for each load and compare with the results obtained from the curves.
(c) If the above loads are all connected across the same power supply, deter-
mine the total real and reactive power taken from the supply.

2.2. A single-phase load is supplied with a sinusoidal voltage

J v(t) = 200 cos(377t)
// The resulting instantaneous power is

p(t) = 800 + 1000 cos(754¢ — 36.87°)

(a) Find the complex power supplied to the load.

(b) Find the instantaneous current ¢(t) and the rms value of the current sup-
plied to the load.

(c) Find the load impedance.

(d) Use MATLAB to plot v(t), p(t), and i(t) = p(t)/v(t) over a range of
0 to 16.67 ms in steps of 0.1 ms. From the current plot, estimate the peak
amplitude, phase angle and the angular frequency of the current, and verify
the results obtained in part (b). Note in MATLAB the command for array or
element-by-element division is . /.

2.3.  An inductive load consisting of R and X in series feeding from a 2400-V
rms supply absorbs 288 kW at a lagging power factor of 0.8. Determine R
and X.

s S BT
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24. An inductive load consisting of R and X in parallel feeding from a 2400-V

rms supply absorbs 288 kW at a lagging power factor of 0.8. Determine R
and X.

2.5. Two loads connected in parallel are supplied from a single-phase 240-V rms
source. The two loads draw a total real power of 400 kW at a power factor
of 0.8 lagging. One of the loads draws 120 kW at a power factor of 0.96
leading. Find the complex power of the other load.

2.6. The load shown in Figure 2.22 consists of a resistance R in parallel with a
capacitor of reactance X. The load is fed from a single-phase supply through
a line of impedance 8.4 + j11.2 €. The rms voltage at the load terminal is
1200£0° V rms, and the load is taking 30 kVA at 0.8 power factor leading.
(a) Find the values of R and X.

(b) Determine the supply voltage V.

8.4 +411.2Q
I .

VCD 1200£0° VIR ——3iX

FIGURE 2.22
Circuit for Problem 2.6.

2.7. Twoimpedances, Z; = 0.8+55.6 2 and Z, = 8— j16 (, and a single-phase
motor are connected in parallel across a 200-V rms, 60-Hz supply as shown
in Figure 2.23. The motor draws 5 kVA at 0.8 power factor lagging.

+ T I I I
| 08" 8’ °
. S3 = 5kVA
200£0° v @) at 0.8 PF lag
5.6 —j16 T
FIGURE 2.23

Circuit for Problem 2.7.
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(a) Find the complex powers S, Sz for the two impedances, and S3 for the
motor.

(b) Determine the total power taken from the supply, the supply current, and
the overall power factor. 4

(c) A capacitor is connected in parallel with the loads. Find the kvar and the
capacitance in uF to improve the overall power factor to unity. What is the
new line current?

Two single-phase ideal voltage sources are connected by a line of impedance
of 0.7 4 j2.4 €2 as shown in Figure 2.24. V; = 500£16.26° V and V; =
585/0° V. Find the complex power for each machine and determine whether
they are delivering or receiving real and reactive power. Also, find the real
and the reactive power loss in the line.

0.7 + 2.4 Q
Io

500£16.26° V C_') 585/0° V

FIGURE 2.24
Circuit for Problem 2.8.

2.9.

2.10.

\

WFRQ a MATLAB program for the system of Example 2.6 such that the volt-
age magnitude of source 1 is changed from 75 percent to 100 percent of
the given value in steps of 1 V. The voltage magnitude of source 2 and the
phase angles of the two sources is to be kept constant. Compute the complex
power for each source and the line loss. Tabulate the reactive powers and
plot Q1, Q2, and Q, versus voltage magnitude |V|. From the results, show
that the flow of reactive power along the interconnection is determined by
the magnitude difference of the terminal voltages.

A balanced three-phase source with the following instantaneous phase volt-
ages

Van = 2500 cos{wt)
Upp, = 2500 cos(wt — 120°)
Uen, = 2500 cos(wt — 240°)
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supplies a balanced Y-connected load of impedance Z = 250/36. 87 ° £ per
phase.

(a) Using MATLAB, plot the instantaneous powers pq, Py, p. and their sum
versus wt over a range of 0:0.05: 27 on the same graph. Comment on the
nature of the instantaneous power in each phase and the total three-phase
real power.

(b) Use (2.44) to verify the total power obtained in part (a).

2.11. A 4157-V rms, three-phase supply is applied to a balanced Y-connected
three-phase load consisting of three identical impedances of 48/36.87°€).
Taking the phase to neutral voltage V,,, as reference, calculate
(a) The phasor currents in each line.

(b) The total active and reactive power supplied to the load.

2.12. Repeat Problem 2.11 with the same fhree-phase impedances arranged in a A
connection. Take V,;, as reference.

2.13. A balanced delta connected load of 15 + 518 €2 per phase is connected at
the end of a three-phase line as shown in Figure 2.25. The line impedance is
1 + j2 €2 per phase. The line is supplied from a three-phase source with a

line-to-line voltage of 207.85 V rms. Taking V, as reference, determine the
following:

(a) Current in phase a.
(b) Total complex power supplied from the source.
(¢) Magnitude of the line-to-line voltage at the load terminal.

1+ 720
qQo——————— AAAA~YY M a
|Vi| = 207.85V
ho—————AAAY b 15 + j18 0
CO—— AAAA—YYYL c

FIGURE 2.25
Circuit for Problem 2.13.

2.14. Three parallel three-phase loads are supplied from a 207.85-V rms, 60-Hz
three-phase supply. The loads are as follows:

Load 1: A 15 hp motor operating at full-load, 93.25 percent efficiency, and
0.6 lagging power factor.




2.12. BALANCED THREE-PHASE POWER 47

Load 2: A balanced resistive load that draws a total of 6 kW.
Load 3: A Y-connected capacitor bank with a total rating of 16 kvar.

(a) What is the total system kW, kvar, power factor, and the supply current
per phase? ‘ ‘

(b) What is the system power factor and the supply current per phase when
the resistive load and induction motor are operating but the capacitor bank is
switched off?

2.15. Three loads are connected in parallel across a 12.47 kV three-phase supply.

Load 1: Inductive load, 60 kW and 660 kvar.
Load 2: Capacitive load, 240 kW at 0.8 power factor.
Load 3: Resistive load of 60 kW.

(a) Find the total complex power, power factor, and the supply current.

(b) A Y-connected capacitor bank is connected in parallel with the loads.
Find the total kvar and the capacitance per phase in uF to improve the overall
power factor to 0.8 lagging. What is the new line current?

2.16. A balanced A-connected load consisting of a pure resistances of 18 ) per
phase is in parallel with a purely resistive balanced Y-connected load of 12 2
per phase as shown in Figure 2.26. The combination is connected to a three-
phase balanced supply of 346.41-V rms (line-to-line) via a three-phase line
having an inductive reactance of j3 §2 per phase. Taking the phase voltage
Van as reference, determine
(a) The current, real power, and reactive power drawn from the supply.

(b) The line-to-neutral and the line-to-line voltage of phase a at the combined
load terminals.

730
ar ; Y™, a
V| = 346.41V
;LI - b 180

7
c / e, c
2120
»r“/ "

FIGURE 2.26

Circuit for Problem 2.16.




CHAPTER

3

GENERATOR AND
TRANSFORMER MODELS:
THE PER-UNIT SYSTEM

3.1 INTRODUCTION

Before the power systems network can be solved, it must first be modeled. The
three-phase balanced system is represented on a per-phase basis, which was de-
scribed in Section 2.10. The single-phase representation is also used for unbalanced
systems by means of symmetrical components which is treated in a later chapter.
In this chapter we deal with the balanced system, where transmission lines are rep-
resented by the m model as described in Chapter 4. Other essential components
of a power system are generators and transformers; their theory and construction
are discussed in standard electric machine textbooks. In this chapter, we represent
simple models of generators and transformers for steady-state balanced operation.

Next we review the one-line diagram of a power system showing generators,
transformers, transmission lines, capacitors, reactors, and loads. The diagram is
usually limited to major transmission systems. As a rule, distribution circuits and
small loads are not shown in detail but are taken into account merely as lumped
loads on substation busses.

48
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In the analysis of power systems, it is frequently convenient to use the per-
unit system. The advantage of this method is the elimination of transformers by
simple impedances. The per-unit system is presented, followed by the impedance
diagram of the network, expressed to a common MVA base.

3.2 SYNCHRONOUS GENERATORS

Large-scale power is generated by three-phase synchronous generators, known as
alternators, driven either by steam turbines, hydroturbines, or gas turbines. The
armature windings are placed on the stationary part called stator. The armature
windings are designed for generation of balanced three-phase voltages and are ar-
ranged to develop the same number of magnetic poles as the field winding that is
on the rotor. The field which requires a relatively small power (0.2-3 percent of the
machine rating) for its excitation is placed on the rotor. The rotor is also equipped
with one or more short-circuited windings known as damper windings. The rotor is
driven by a prime mover at constant speed and its field circuit is excited by direct
current. The excitation may be provided through slip rings and brushes by means of
dc generators (referred to as excifers) mounted on the same shaft as the rotor of the
synchronous machine. However, modern excitation systems usually use ac gener-
ators with rotating rectifiers, and are known as brushless excitation. The generator
excitation system maintains generator voltage and controls the reactive power flow.

The rotor of the synchronous machine may be of cylindrical or salient con-
struction. The cylindrical type of rotor, also called round rotor, has-one distributed
winding and a uniform air gap. These generators are driven by steam turbines and
are designed for high speed 3600 or 1800 rpm (two- and four-pole machines, re-
spectively) operation. The rotor of these generators has a relatively large axial
length and small diameter to limit the centrifugal forces. Roughly 70 percent of
large synchronous generators are cylindrical rotor type ranging from about 150 to
1500 MVA. The salient type of rotor has concentrated windings on the poles and
nonuniform air gaps. It has a relatively large number of poles, short axial length,
and large diameter. The generators in hydroelectric power stations are driven by
hydraulic turbines, and they have salient-pole rotor construction.

3.21 GENERATOR MODEL

An elemen&y%o-pole three-phase generator is illustrated in Figure 3.1. The sta-
tor contains three. coils, aa’, bb', and ¢/, displaced from each other by 120 elec-
trical degrees. The concentrated full-pitch coils shown here may be considered to
represent distributed windings producing sinusoidal mmf waves concentrated on
the magnetic axes of the respective phases. When the rotor is excited to produce
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Fr

FIGURE 3.1
Elementary two-pole three-phase synchronous generator.

an air gap flux of ¢ per pole and is revolving at constant angular velocity w, the
flux linkage of the coil varies with the position of the rotor mmf axis wt, where
wt is measured in electrical radians from coil aa’ magnetic axis. The flux linkage
for an N-turn concentrated coil aa’ will be maximum (N @) at wt = 0 and zero
atwt = m/2. Assuming distributed winding, the flux linkage A, will vary as the
cosine of the angle wt. Thus, the flux linkage with coil a is

Ao = Nocoswt 3.1
The voltage induced in coil aa’ is obtained from Faraday’s law as
eq = —% = wN¢sinwt

= Emaz sinwt 3.2)

= Epmgq cos(wt — z)
7 2
where

Enor =wN¢p =2nfN¢
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Therefore, the rms value of the generated voltage is
E=444fN¢ (3.3)

where f is the frequency in hertz. In actual ac machine windings, the armature
coil of each phase is distributed in a number of slots. Since the emfs induced in
different slots are not in phase, their phasor sum is less than their numerical sum.
Thus, a reduction factor K, called the winding factor, must be applied. For most
three-phase windings K, is about 0.85 to 0.95. Therefore, for a distributed phase
winding, the rms value of the generated voltage is

E=444K,fNo (3.4)

The magnetic field of the rotor revolving at constant speed induces three-phase
sinusoidal voltages in the armature, displaced by 27 /3 radians. The frequency of
the induced armature voltages depends on the speed at which the rotor runs and
on the number of poles for which the machine is wound. The frequency of the
armature voltage is given by '

__Pn

f= 260 (3.5)

where n is the rotor speed in rpm, referred to as synchronous speed. During normal
conditions, the generator operates synchronously with the power grid. This results
in three-phase balanced currents in the armature. Assuming current in phase a is
lagging the generated emf e, by an angle v, which is indicated by line mn in
Figure 3.1, the instantaneous armature currents are

g = Imag sin(wt — )

2
i = Iz Sin(wt — 9 — %) (3.6)
ic = Imgg sin(wt — ¢ — %7{

According to (3.2) the generated emf e, is maximum when the rotor magnetic axis
is under phase a. Since i, is lagging e, by an angle 1, when line mn reaches
the axis of coil aa’, current in phase a reaches its maximum value. At any instant
of time, each phase winding produces a sinusoidally distributed mmf wave with
its peak along the axis of the phase winding. These sinusoidally distributed fields
can be represented by vectors referred to as space phasors. The amplitude of the
sinusoidally distributed mmf £, (8) is represented by the vector F}, along the axis of
phase a. Similarly, the amplitude of the mmfs f,(8) and f.(6) are shown by vectors
Fy and F along their respective axis. The mmf amplitudes are proportional to the

st it
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instantaneous value of the phase current, i.e.,
Fo = Kig = KIgg sin(wt — 9) = Fy, sin(wt — 4)
2 2
Fy = Kiy = K pgg sin(wt — ) — ?”) = Fsin(wt — 9 — ?”) (3.7

_ 4
F, = Ki, = K sin(wt — ¢ — %75) = Fp sin(wt — ¢ — —33)

where K is proportional to the number of armature turns per phase and is a function
of the winding type. The resultant armature mmf is the vector sum of the above
mmfs. A suitable method for finding the resultant mmf is to project these mmfs on
line mn and obtain the resultant in-phase and quadrature-phase components. The
resultant in-phase components are

Fy = Fp sin(wt — 1) cos(wt — ¢) + Fy, sin(wt — ¢ — %71)
cos(ut — = ) + Frsinfut — 4 — 1) cos(wt — = o

Using the trigonometric identity sin o cos o = (1/2) sin 2, the above expression
becomes

Frm
R = T[sin 2(wt — ) + sin 2(wt — 9 — 232)

4
+ sin 2(wt — ¢ — ?”)]
The above expression is the sum of three sinusoidal functions displaced from each
other by 27 /3 radians, which adds up to zero, i.e., F; = 0.

The sum of quadrature components results in
Fy = Fyp sin(wt — ) sin(wt — 9) + F, sin(wt — 3 — 2%) sin{wt — ¢ — 232)
+Fp sin(wt — ¢ — 4?‘”) sin(wt — ¢ — 4%)
Using the trigonometric identity sin® & = (1/2)(1 — cos 2a), the above expression
becomes
Fy= 522[3 — cos 2(wt — ) + cos 2(wt — P — 231)
+ cos 2(wt — ¢ ~ 4?W)]

The sinusoidal terms of the above expression are displaced from each other by
27 /3 radians and add up to zero, with F}, = 3 /2F,,. Thus, the amplitude of the
resultant armature mmf or stator mmf becomes

P, = g R 3.8)
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FIGURE 3.2

Combined phasor/vector diagram for one phase of a cylindrical rotor generator.

We thus conclude that the resultant armature mmf has a constant amplitude
perpendicular to line mn, and rotates at a constant speed and in synchronism
with the field mmf F;.. To see a demonstration of the rotating magnetic field, type
rotfield at the MATLAB prompt.

A typical synchronous machine field alignment for operation as a generator is
shown in Figure 3.2, using space vectors to represent the various fields. When the
rotor is revolving at synchronous speed and the armature current is zero, the field
mmf F; produces the no-load generated emf E in each phase. The no-load gen-
erated voltage which is proportional to the field current is known as the excitation
voltage. The phasor voltage for phase a, which is lagging F;. by 90°, is combined
with the mmf vector diagram as shown in Figure 3.2. This combined phasor/vector

diagram leads to a circuit model for the synchronous machine. It must be empha- .

sized that in Figure 3.2 mmfs are space vectors, whereas the emfs are time phasors.
When the armature is carrying balanced three-phase currents, F is produced per-
pendicular to line mn. The interaction of armature mmf and the field mmf, known
as armature reaction, gives rise to the resultant air gap mmf Fy,.. The resultant mmf
Fg, is the vector sum of the field mmf F,. and the armature mmf Fj. The resultant
mmf is responsible for the resultant air gap flux ¢, that induces the generated emf
on-load, shown by E,.. The armature mmf F induces the emf F,,., known as the
armature reaction voltage, which is perpendicular to F;. The voltage F,, leads

PR
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I, by 90° and thus can be represented by a voltage-drop across a reactance X,
due to the current I,. X, is known as the reactance of the armature reaction. The -
phasor sum of E and E,, is shown by E,, perpendicular to F,, which represents
the on-load generated emf.

E= Esr + anrIa' (3-9)

The terminal voltage V is less than E,, by the amount of resistive voltage drop
R, 1, and leakage reactance voltage drop X,I,,. Thus

E=V+[Rs+ j(Xe + Xor)) (3.10)

or
E=V +[R+ 37X, (3.11)

where X; = (X, + X, ) is known as the synchronous reactance. The cosine of the
angle between I and V, i.e., cos 6 represents the power factor at the generator ter-
minals. The angle between E and E, is equal to the angle between the rotor mmf
F; and the air gap mmf Fi,, shown by &,. The power developed by the machine
is proportional to the product of F;., Fy, and sin §,. The relative positions of these
mmfs dictates the action of the synchronous machine. When F; is ahead of Fy, by
an angle d,, the machine is operating as a generator and when F,, falls behind F,,
the machine will act as a motor. Since F and E,, are proportional to F,. and Fi,,
respectively, the power developed by the machine is proportional to the products of
E, Eq, and sin d,. The angle §, is thus known as the power angle. This is a very
important result because it relates the timé angle between the phasor emfs with
the space angle between the magnetic fields in the machine. Usually the developed
power is expressed in terms of the excitation voltage E, the terminal voltage V,
and sin 6. The angle ¢ is approximately equal to &, because the leakage impedance
is very small compared to the magnetization reactance.

Due to the nonlinearity of the machine magnetization curve, the synchronous
reactance is not constant. The unsaturated synchronous reactance can be found
from the open- and short-circuit data. For operation at or near rated terminal volt-
age, it is usually assumed that the machine is equivalent to an unsaturated one
whose magnetization curve is a straight line through the origin and the rated volt-
age point on the open-circuit characteristic. For steady-state analysis, a constant
value known as the saturated value of the synchronous reactance corresponding to
the rated voltage is used. A simple per-phase model for a cylindrical rotor genera-
tor based on (3.11) is obtained as shown in Figure 3.3. The armature resistance is
generally much smaller than the synchronous reactance and is often neglected. The
equivalent circuit connected to an infinite bus becomes that shown in Figure 3.4,
and (3.11) reduces to

E=V+jX,I, (3.12).
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Zs= Ry + jXs
E Ct) V | Load
FIGURE 3.3
Synchronous machine equivalent circuit.
E . 14
J Xs 1,
FIGURE 3.4

Synchronous machine connected to an infinite bus.

Figure 3.5 shows. the phasor diagram of the generator with terminal voltage
as reference for excitations corresponding to lagging, unity, and leading power fac-
tors. The voltage regulation of an alternator is a figure of merit used for compari-

E E
Zola Zslg
M 5 | 0\ 6
\04 vV I, vV Vv
I

(a) Lagging pf load - (b) Upf load (c) Leading pf load

FIGURE 3.5 -
Synchronous generator phasor diagram.

son with other machines. It is defined as the percentage change in terminal voltage
from no-load to rated load. This gives an indication of the change in field current
required to maintain system voltage when going from no-load to rated load at some
specific power factor.

an I - IV;‘atedl

_ _ |B] = [Vratea|.
VR = x 100 = ————

|Vratedl IV;ated l

The no-load voltage for a specific power factor may be determined by operating
the machine at rated load conditions and then removing the load and observing

x 100 (3.13)

R e BT
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the no-load voltage. Since this is not a practical method for very large machines,
an accurate analytical method recommended by IEEE as given in reference [43]
may be used. An approximate method that provides reasonable results is to con-
sider a hypothetical linearized magnetization curve drawn to intersect the actual
magnetization curve at rated voltage. The value of F calculated from (3.12) is then
used to find the field current from the linearized curve. Finally, the no-load voltage
corresponding to this field current is found from the actual magnetization curve.

3.3 STEADY-STATE CHARACTERISTICS—
CYLINDRICAL ROTOR

3.3.1 POWER FACTOR CONTROL

Most synchronous machines are connected to large interconnected electric power
networks. These networks have the important characteristic that the system voltage
at the point of connection is constant in magnitude, phase angle, and frequency.
Such a point in a power system is referred to as an infinite bus. That is, the voltage
at the generator bus will not be altered by changes in the generator’s operating
condition.

The ability to vary the rotor excitation is an important feature of the syn-
chronous machine, and we now consider the effect of such a variation when the
machine operates as a generator with constant mechanical input power. The per-
phase equivalent circuit of a synchronous generator connected to an infinite bus is
shown in Figure 3.4. Neglecting the armature resistance, the output power is equal
to the power developed, which is assumed to remain constant given by

Psg = R[BVIY = 3|V||I,| cos§ (3.14)

where V is the phase-to-neutral terminal voltage assumed to remain constant. From
(3.14) we see that for constant developed power at a fixed terminal voltage V/,
I, cos 6 must be constant. Thus, the tip of the armature current phasor must fall on
a vertical line as the power factor is varied by varying the field current as shown in
Figure 3.6. From this diagram we have

cd = E;sind; = X I, coséy 3.15)

Thus E sind; is a constant, and the locus of B is on the line ef. In Figure 3.6,
phasor diagrams are drawn for three armature currents. Application of (3.12) for a
lagging power factor armature current I,; results in Ej. If 6 is zero, the generator
operates at unity power factor and armature current has a minimum value, shown
by I,2, which results in F». Similarly, F3 is obtained corresponding to I3 at a
leading power factor. Figure 3.6 shows that the generation of reactive power can
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FIGURE 3.6
Variation of field current at constant power.

be controlled by means of the rotor excitation while maintaining a constant real
power output. The variation in the magnitude of armature current as the excitation
voltage is varied is best shown by a curve. Usually the field current is used as the
abscissa instead of excitation voltage because the field current is readily measured.
The curve of the armature current as the function of the field current resembles the
letter V and is often referred to as the V curve of synchronous machines. These
curves constitute one of the generator’s most important characteristics. There is, of
course, a limit beyond which the excitation cannot be reduced. This limit is reached
when d = 90°. Any reduction in excitation below the stability limit for a particular
load will cause the rotor to pull out of synchronism. The V curve is illustrated in
Figure 3.7 (page 62) for the machine in Example 3.3.

3.3.2 POWER ANGLE CHARACTERISTICS

Consider the per-phase equivalent circuit shown in Figure 3.4. The three-phase
- complex power at the generator terminal is

Sap = 3VI; (3.16)

Expressing the phasor voltages in polar form, the armature current is

|E|Z6 —|V|L0
I = 3.17)
VAV ‘
Substituting for I’} in (3.16) results in
B[V 4
S3s =3 ly—6 —3 V4 3.18
3¢ IZSI Y |Zs| Y ( )
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Thus, the real power P34 and reactive power Q3¢ are

[E|[V] v?
Py, =3 cos(y—46)—3 cos 3.19)
|E|VI . V> .
=3 sin(y—4) —3 sin (3.20)

If R, is neglected, then Z; = j X, and v = 90°. Equations (3.19) and (3.20) reduce
to

Py = 3I—E)g—svl siné (3.21)
Q3p = 3¥(|E[ cosd — |V|) (3.22)

Equation (3.21) shows that if |E| and [V| are held fixed and the power angle &
is changed by varying the mechanical driving torque, the power transfer varies
sinusoidally with the angle §. From (3.21), the theoretical maximum power occurs
when § = 90°
Pmax(3¢) = 3%‘_@ (3.23)
s
' The behavior of the synchronous machine can be described as follows. If we start
with 6 = 0° and increase the driving torque, the machine accelerates, and the rotor
mmf F;. advances with respect to the resultant mmf F,.. This results in an increase
in 4, causing the machine to deliver electric power. At some value of § the machine
reaches equilibrium where the electric power output balances the increased me-
chanical power owing to the increased driving torque. It is clear that if an attempt
were made to advance § further than 90° by increasing the driving torque, the
electric power output would decrease from the P,,,, point. Therefore, the excess
driving torque continues to accelerate the machine, and the mmfs will no longer be
magnetically coupled. The machine loses synchronism and automatic equipment
disconnects it from the system. The value P, is called the steady-state stabil-
ity limit or static stability limit. In general, stability considerations dictate that a
synchronous machine achieve steady-state operation for a power angle at consid-
erably less than 90°. The control of real power flow is maintained by the generator
governor through the frequency-power control channel.
Equation (3.22) shows that for small , cos § is nearly unity and the reactive
power can be approximated to

Q3¢ ~ 3%(|E| -V (3.24)
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From (3.24) we see that when |E| > |V| the generator delivers reactive power
to the bus, and the generator is said to be overexcited. If |E| < |V|, the reactive
power delivered to the bus is negative; that is, the bus is supplying positive reac-
tive power to the generator. Generators are normally operated in the overexcited
mode since the generators are the main source of reactive power for inductive load
throughout the system. Therefore, we conclude that the flow of reactive power is
governed mainly by the difference in the excitation voltage |E| and the bus bar
voltage |V'|. The adjustment in the excitation voltage for the control of reactive
power is achieved by the generator excitation system.

Example 3.1

A 50-MVA, 30-kV, three-phase, 60-Hz synchronous generator has a synchronous
reactance of 9 {2 per phase and a negligible resistance. The generator is delivering
rated power at a 0.8 power factor lagging at the rated terminal voltage to an infinite
bus.

(a) Determine the excitation voltage per phase E and the power angle §.

(b) With the excitation held constant at the value found in (a), the driving torque is
reduced until the generator is delivering 25 MW. Determine the armature current
and the power factor.

(c) If the generator is operating at the excitation voltage of part (a), what is the
steady-state maximum power the machine can deliver before losing synchronism?
Also, find the armature current corresponding to this maximum power.

(a) The three-phase apparent power is

S3p = 50/cos™10.8 = 50/36.87° MVA
40 MW + j30 Mvar

The rated voltage per phase is

V= 37(;_; =17.32/0° kV
The rated current is
_ S3s _ (50/—36.87)10%
3v* 3(17.32£0°)
The excitation voltage per phase from (3.12) is

E =17320.5 + (59)(962.25/—-36.87) = 23558/17.1° V

I, = 962.25/—-36.87° A

The excitation voltage per phase (line to neutral) is 23.56 kV and the power angle
is 17.1°,
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(b) When the generator is delivering 25 MW from (3.21) the power angle is

L (25)(9) _ 0
§=sin”" [(3)(23.56)(17.32)] = 10591

The armature current is

_ (283,558£10.591° — 17,320/0°)

I,
a 79

= 807.485/—-53.43° A

The power factor is given by cos(53.43) = 0.596 lagging.

(c) The maximum power occurs at § = 90°

E||V 923.56)(17.32
Pma:z:(3¢) =3] )I(!s I =3( )9( ) =136 MW

The armature current is

_(23,558£90° — 17,320£0°)

I,
a 39

= 3248.85/36.32° A

The power factor is given by cos(36.32) = 0.8057 leading.

Example 3.2

The generator of Example 3.1 is delivering 40 MW at a terminal voltage of 30 kV.
Compute the power angle, armature current, and power factor when the field cur-
rent is adjusted for the following excitations.

(a) The excitation voltage is decreased to 79.2 percent of the value found in Exam-
ple 3.1.

(b) The excitation voltage is decreased to 59.27 percent of the value found in Ex-
ample 3.1.

(c) Find the minimum excitation below which the generator will lose synchronism.
(a) The new excitation voltage is
E =0.792 x 23,558 = 18,657 V

From (3.21) the power angle is

5 = sin-1 [ (40)(9)
(3)(18.657)(17.32)

] =21.8°
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The armature current is

_ (18657/21.8° — 17320/0°)
= =

I, =769.8/0° A

The power factor is given by cos(0) = 1.

(b) The new excitation voltage is
E =0.5927 x 23,558 = 13,963 V

From (3.21) the power angle is

d = sin

- (40)(9) _ 0
l [(3)(13.963)(17.32)] =29.748

The armature current is

1 . o __ (e}
I, = (13,963£29 7438'9 17,320£0°) — 062.3/36.87° A

From current phase angle, the power factor is cos 36.87 = 0.8 leading. The gener-
ator is underexcited and is actually receiving reactive power.

(c) From (3.23), the minimum excitation corresponding to § = 90° is

oo _
= @aram = 0B

The armature current is

_ (6,928/90° —17,320£0°)

I,
a 79

= 2073/68.2° A

The current phase angle shows that the power factor is cos 68.2 = 0.37 leading.
The generator is underexcited and is receiving reactive power.

Example 3.3

For the generator of Example 3.1, construct the V curve for the rated power of 40
MW with varying field excitation from 0.4 power factor leading to 0.4 power factor
lagging. Assume the open-circuit characteristic in the operating region is given by
E = 2000I; V.

The following MATLAB cdmmand results in the V curve shown in Figure 3.7.
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P = 40; % real power, MW
V = 30/sqrt(3)+ j*0; % phase voltage, kV
Zs = j*9; % synchronous impedance

ang = acos(0.4); .
theta=ang:-0.01:-ang;%Angle 0.4 leading to 0.4 lagging pf
P = Pxones(1,length(theta));’generates array of same size

Iam = P./(3*abs(V)*cos(theta)); % current magnitude kA
Ia = Iam.*(cos(theta) + j*sin(theta)); % current phasor
E =V + Zs.*Ia; % excitation voltage phasor
Em = abs(E); % excitation voltage magnitude, kV
If = Em*x1000/2000; % field current, A

plot(If, Iam), grid, xlabel(’If - A’)
ylabel(’Ia - kA’), text(3.4, 1, ’Leading pf’)
text (13, 1, ’Lagging pf’), text(9, .71, ’Upf’)

2;0 ¥ T T T T T T

1.8+
1.6
1.4}

1.2}

T

1.0 Leading pf

Lagging pf -

081

Upf
0.6 1 1 ) ] 1 L ]

2 4 6 8 10 12 14 16 18
It A

FIGURE 3.7
V curve for generator of Example 3.3.

3.4 SALIENT-POLE SYNCHRONOUS GENERATORS

The model developed in Section 3.2 is only valid for cylindrical rotor generators
with uniform air gaps. The salient-pole rotor results in nonuniformity of the mag-
netic reluctance of the air gap. The reluctance along the polar axis, commonly
referred to as the rotor direct axis, is appreciably less than that along the interpolar
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axis, commonly referred to as the quadrature axis. Therefore, the reactance has
a high value X along the direct axis, and a low value X, along the quadrature
axis. These reactances produce voltage drop in the armature and can be taken into
account by resolving the armature current I, into two components I, in phase,
and I in time quadrature, with the excitation voltage. The phasor diagram with the
armature resistance neglected is shown in Figure 3.8. It is no longer possible to rep-

a Iy d E

jXqu

Xaly

FIGURE 3.8
Phasor diagram for a salient-pole generator.

resent the machine by a simple equivalent circuit. The excitation voltage magnitude
is

|E| = |V]cosé + Xyl (3.25)
The three-phase real power at the generator terminal is
P = 3|V||I;| cos 8 (3.26)

The power component of the armature current can be expressed in terms of I and
1, as follows.

" |elcos@ = ab+ de
= Igcos 6 + Igsind 3.27

Substituting from (3.27) into (3.26), we have
P = 3|V|(I;cos d + I;sin §) (3.28)
Now from the phasor diagram given in Figure 3.8,
[V]sind = XgI, (3.29)
or |

|V|sin é
I, =
q Xq

(3.30)
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Also, from (3.25), I, is given by

__|E|=|V]|cosd

1,
d X,

(3.31)

Substituting for I3 and I; from (3.31) and (3.30) into (3.28), the real power with
armature current neglected becomes

2Xq— X,

P3y =3——sind + 3|V XX 2 5in 26 (3.32)
dg

|E]V]
Xa
The power equation contains an additional term known as the reluctance power.
Equations (3.25) and (3.32) can be utilized for steady-state analysis. For short-
circuit analysis, assuming a high X/R ratio, the power factor approaches zero
and the quadrature component of current can often be neglected. In such a case,
X4 merely replaces the X, used for the cylindrical rotor machine. Generators are
thus modeled by their direct axis reactance in series with a constant-voltage power
source. Later in the text it will be shown that X; takes on different values, depend-
ing upon the transient time following the short circuit. These reactances are usually
expressed in per-unit and are available from the manufacturer’s data.

3.5 POWER TRANSFORMER

Transformers are essential elements in any power system. They allow the relatively

low voltages from generators to be raised to a very high level for efficient power

transmission. At the user end of the system, transformers reduce the voltage to
values most suitable for utilization. In modern utility systems, the energy may un-
dergo four or five transformations between generator and ultimate user. As a resul,
a given system is likely to have about five times more kVA of installed capacity of
transformers than of generators.

3.6 EQUIVALENT CIRCUIT OF A TRANSFORMER

The equivalent circuit model of a single-phase transformer is shown in Figure 3.9.
The equivalent circuit consists of an ideal transformer of ratio N;: Ny together with
elements which represent the imperfections of the real transformer. An ideal trans-
former would have windings with zero resistance and a lossless, infinite perme-
ability core. The voltage E; across the primary of the ideal transformer represents
the rms voltage induced in the primary winding by the mutual flux ¢. This is the
portion of the core flux which links both primary and secondary coils. Assuming
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Z1 =R +jXy Zy = Ry + jXo
o> —AAAA—Y Y AMA— Y
+1 I I I,
: I, I,
Vi Ry 2 jXm E, Ey Va2 |:J
FIGURE 3.9

Equivalent circuit of a transformer.

sinusoidal flux ¢ = ®,y,,, coswt, the instantaneous voltage e is

d¢
= Ny =2
5 €1 1 di
= ~wN1®pqe sinwt
= E1mag cos(wt + 90°) (3.33)
where
Elma:r: - 27rfN1®ma:c (3.34)

or the rms voltage magnitude E is
Ei=444fN1Dpgy (3.35)

It is important to note that the phasor flux is lagging the induced voltage F; by
90°. Similarly the rms voltage F across the secondary of the ideal transformer
represents the voltage induced in the secondary winding by the mutual flux ¢,
given by

Ey = 4.44fNo D5 (3.36)

In the ideal transformer, the core is assumed to have a zero reluctance and there
is an exact mmf balanced between the primary and secondary. If I} represents the
component of current to neutralize the secondary mmf, then

ILN; = I;N, (3.37)
Therefore, for an ideal-transformer, from (3.35) through (3.37) we have

E,_ILh N

R 3.38
BN, (3-38)

ESPRWPEE
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In a real transformer, the reluctance of the core is finite, and when the secondary
current Iy is zero, the primary current has a finite value. Since at no-load, induced
voltage E is almost equal to the supply voltage V;, the induced voltage and the
flux are sinusoidal. However, because of the nonlinear characteristics of the ferro-
magnetic core, the no-load current is not sinusoidal and contains odd harmonics.
The third harmonic is particularly troublesome in certain three-phase connections
of transformers. For the purpose of modeling, we assume a sinusoidal no-load cur-
rent with the rms value of Iy, known as the no-load current. This current has a
component I, in phase with flux, known as the magnetizing current, to set up
the core flux. Since flux is lagging the induced voltage E; by 90°, I, is also lag-
ging the induced voltage E; by 90°. Thus, this component can be represented in
the circuit by the magnetizing reactance jX,,;. The other component of Iy is I,
which supplies the eddy-current and hysteresis losses in the core. Since this is a
power component, it is in phase with F; and is represented by the resistance R
as shown in Figure 3.9.

In a real transformer with finite reluctance, all of the flux is not common to
both primary and secondary windings. The flux has three components: mutual flux,
primary leakage flux, and secondary leakage flux. The leakage flux associated with
one winding does not link the other, and the voltage drops caused by the leakage
flux are expressed in terms of leakage reactances X; and X5. Finally, R; and Ry
are included to represent the primary and secondary winding resistances.

To obtain the performance characteristics of a transformer, it is convenient
to use an equivalent circuit model referred to one side of the transformer. From
Kirchhoff’s voltage law (KVL), the voltage equation of the secondary side is

Ey =V, + ZsI, ’ (3.39)

From the relationship (3.38) developed for the ideal transformer, the secondary
induced voltage and current are Ey = (Na/N;)E; and Iy = (Ny/N3)I}, respec-
tively. Upon substitution, (3.39) reduces to

Nl Nl 2 !
E| = — —
1 A Vo + <N2) ZoI,
=V} + 231} (3.40)
where
! / . xrl Nl 2 . Nl 2
Zy=Ry+jX5 = A Ry+3j A X2

Relation (3.40) is the KVL equation of the secondary side referred to the primary,
and the equivalent circuit of Figure 3.9 can be redrawn as shown in Figure 3.10,
so the same effects are produced in the primary as would be produced in the sec-
ondary.
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Zy =R +jX, Zy=Ry+jX)
o__)__JVW\,_fWY\__..______—_I\/\M,_fYW\__)—_—
+ I Iy + Ié = %%Ié

I Im
Vi Rag jXm1} By V= {iVe [:|
FIGURE 3.10

Exact equivalent circuit referred to the primary side.

On no-load, the primary voltage drop is very small, and V; can be used in
place of E; for computing the no-load current Ip. Thus, the shunt branch can be
moved to the left of the primary series impedance with very little loss of accuracy.
In this manner, the primary quantities £; and X; can be combined with the referred
secondary quantities R/, and X, to obtain the equivalent primary quantities R, and
Xe1. The equivalent circuit is shown in Figure 3.11 where we have dispensed with
the coils of the ideal transformer. From Figure 3.11

Zel = Rel + lel

O
+ I

I,
141 Ry
o
FIGURE 3.11

Approximate equivalent circuit referred to the primary.

Vi =V; 4 (R + jXa) Iy (3.41)
where
R, =R +(&)2R X=X +(Nl)2X and I, = L
el — 411 N2 2 el =— 1 N2 2 2 — 3V2'*

The equivalent circuit referred to the secondary is also shown in Figure 3.12. From
Figure 3.12 the referred primary voltage V; is given by

Vi = Va4 (Rea + j Xe2) I ' (3.42)
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ZeZ = Re2 +le2

o /V\/\/\,_IYYY\__>____
o I I

I; I,
Vll Rc2 ijZ V2 [J
FIGURE 3.12

Approximate equivalent circuit referred to the secondary.

Power transformers are generally designed with very high permeability core and
very small core loss. Consequently, a further approximation of the equivalent cir-
cuit can be made by omitting the shunt branch, as shown in Figure 3.13. The equiv-
alent circuit referred to the secondary is also shown in Figure 3.13.

Zel = Rel + lel Ze2 = Re2 +le2
o——)—-—/\/\/\/\,_me____ o——/\NV\,_NY'Y\_>__
+I + I
Vi V) = L]\V,ng Vi =8 VQU
FIGURE 3.13

Simplified circuits referred to one side.

3.7 DETERMINATION OF EQUIVALENT
CIRCUIT PARAMETERS

The parameters of the approximate equivalent circuit are readily obtained from
open-circuit and short-circuit tests. In the open-circuit test, rated voltage is ap-
plied at the terminals of one winding while the other winding terminals are open-
circuited. Instruments are connected to measure the input voltage Vi, the no-load
input current Iy, and the input power Py. If the secondary is open-circuited, the
referred secondary current I will be zero, and only a small no-load current will
be drawn from the supply. Also, the primary voltage drop (R; + 5X1)Io can be
neglected, and the equivalent circuit reduces to the form shown in Figure 3.14.
Since the secondary winding copper loss (resistive power loss) is zero and the
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o— > 0
+ 0 Iy

I I,
Vi R JXmi
o o
FIGURE 3.14

Equivalent circuit for the open-circuit test.

primary copper loss R;Iy? is negligible, the no-load input power Py represents the
transformer core loss commonly referred to as iron loss. The shunt elements R,
and X,, may then be determined from the relations

V1
R 3.43
cl = PO ( )
The two components of the no-load current are
Vi
I, = — 3.44
=5 (3.44)

and

Ip =12 - 1.2 (3.45)

Therefore, the magnetizing reactance is
Xm1 = 143 (3.46)
I

In the short-circuit test, a reduced voltage V. is applied at the terminals of one
winding while the other winding terminals are short-circuited. Instruments are con-
nected to measure the input voltage V., the input current I, and the input power
Ps.. The applied voltage is adjusted until rated currents are flowing in the wind-
ings. The primary voltage required to produce rated current is only a few percent
of the rated voltage. At the correspondingly low value of core flux, the exciting
current and core losses are entirely negligible, and the shunt branch can be omit-
ted. Thus, the power input can be taken to represent the winding copper loss. The
transformer appears as a short when viewed from the primary with the equivalent
leakage impedance Z,; consisting of the primary leakage impedance and the re-
ferred secondary leakage impedance as shown in Figure 3.15. The series elements

s PP
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Zel = Rel + lel
o—— ANAYYY
+r

8C

Vse

e

FIGURE 3.15
Equivalent circuit for the short-circuit test.

R.; and X.; may then be determined from the relations

Vsc
2.4 =
el Isc
and
P sc
= 3.47
R = 555 (3.47)
Therefore, the equivalent leakage reactance is
Xe1 =V Zer” — Rer? (3.48)

3.8 TRANSFORMER PERFORMANCE

The equivalent circuit can now be used to predict the performance characteris-
tics of the transformer. An important aspect is the transformer efficiency. Power
transformer efficiencies very from 95 percent to 99 percent, the higher efficiencies
being obtained from transformers with the greater ratings. The actual efficiency of
a transformer in percent is given by

__ output power

- (3.49
input power

and the conventional efficiency of a transformer at n fraction of the full-load power
is'given by

_ nxSx PF
" (nxSxPF)+n?x P, + P,

n (3.50)
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where S is the full-load rated volt-ampere, P, is the i’ull—load copper loss, and for
a three-phase transformer, they are given by

S = 3|Vl
Pcu = 3Re2|12|2

and P, is the iron loss at rated voltage. For varying I at constant power factor,
maximum efficiency occurs when
d
dn
d|I|
For the above condition, it can be easily shown that maximum efficiency occurs
when copper loss equals core loss at n per-unit loading given by

P, '
n P, (3.51)
Another important performance characteristic of a transformer is change in the
secondary voltage from no-load to full-load. A figure of merit used to compare the
relative performance of different transformers is the voltage regulation. Voltage
regulation is defined as the change in the magnitude of the secondary terminal
voltage from no-load to full-load expressed as a percentage of the full-load value.

|Vai| = | V2l

x 100 3.52
|Val (352)

Regulation =
where V; is the full-load rated voltage. V5, in (3.52) can be calculated by using
equivalent circuits referred to either primary or secondary. When the equivalent
circuit is referred to the primary side, the primary no-load voltage is found from
(3.41), and the voltage regulation becomes

1| — |V

Regulation =
V3]

x 100 : (3.53)

When the equivalent circuit is referred to the secondary side, the secondary no-load
voltage is found from (3.42), and the voltage regulation becomes

Vil - [Val
Val

Regulation = x 100 (3.59)

An interesting feature arises with a capacitive load. Because partial resonance is set
up between the capacitance and the reactance, the secondary voltage may actually
tend to rise as the capacitive load value increases.
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A program called trans is developed for obtaining the transformer perfor-
mance characteristics. The command trans displays a menu with three options:

Option 1 calls upon the function [Re, Xm] = troct(Vo, Io, Po) which prompts
the user to enter the no-load test data and returns the shunt branch parameters. Then
Ze = trsct(Vsc, Isc, Psc) is loaded which prompts the user to enter the short-circuit
test data and returns the equivalent leakage impedance.

Option 2 calls upon the function [Zelv, Zehv] = wz2eqz(Elv, Ehv, Zlv, Zhv)
which prompts the user to enter the individual winding impedances and the shunt
branch. This function returns the referred equivalent circuit for both sides.

Option 3 prompts the user to enter the parameters of the equivalent circuit.

The above functions can be used independently when the arguments of the
functions are defined in the MATLAB environment. If the above functions are typed
without the parenthesis and the arguments, the user will be prompted to enter the
required data.

After the selection of any of the above options, the program prompts the user
to enter the load specifications and proceeds to obtain the transformer performance
characteristics including an efficiency curve from 25 to 125 percent of full-load.

Example 3.4

Data obtained from short-circuit and open-circuit tests of a 240-kVA, 4800/240-V,
60-Hz transformer are:

Open-circuit test, Short-circuit test,
low-side data high-side data

Vi =240V Vse = 1875V
Ip=10A I, =50 A

Py = 1440 W P, = 2625 W

Determine the parameters of the equivalent circuit

The commands

trans

display the following menu

&
4
-
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Type of parameters for input Select
To obtain equivalent circuit from tests
To input individual winding impedances
To input transformer equivalent impedance
To quit

S WN =

Select number of menu — 1

Enter Transformer rated power in kVA, S = 240
Enter rated low voltage in volts = 240

Enter rated high voltage in volts = 4800

Open circuit test data

Enter ’1v’ within quotes for data ref. to low side or
enter ’hv’ within quotes for data ref. to high side — ’1lv?
Enter input voltage, in volts, V, = 240

Enter no-load current in Amp, I, = 10

Enter no-load input power in Watt, P, = 1440

Short circuit test data

Enter ’1lv’ within quotes for data ref. to low side or
enter ’hv’ within quotes for data ref. to high side — ’hv’
Enter reduced input voltage in volts, V. = 187.5

Enter input current in Amp, I, = 50

Enter input power in Watt, P,, = 2625

Shunt branch ref. to LV side Shunt branch ref. to HV side
Rc = 40.000 ohm Rc = 16000.000 ohm
Xm = 30.000 ohm Xm = 12000.000 ohm

it

Series branch ref. to LV side Series branch ref. to HV side
Ze = 0.002625 + j 0.0090 ohm Ze = 1.0500 + J 3.6000 ohm

Hit return to continue

At this point the user is prompted to enter the load apparent power, power factor,
and voltage. The program then obtains the performance characteristics of the trans-
former including the efficiency curve from 25 to 125 percent of full load as shown
in Figure 3.16.

Enter load kVA, Sy = 240

Enter load power factor, pf = 0.8

Enter ’1g’ within quotes for lagging pf

or ’ld’ within quotes for leading pf -> ’1g’
Enter load terminal voltage in volt, V2 = 240
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Transformer Efficiency, pf = 0.8
98.2 T T T T T T T T T

98.06
97.8
97.6
97.4r¢
97.2}
9701
96.8

%6060 80 100 120 140 160 180 200 290 40

Output Power, KW

Percent

FIGURE 3.16
Efficiency curve of Example 3.4.

Secondary load voltage = 240.000 V
Secondary load current = 1000.000 A at -36.87 degrees
Current ref. to primary = - 50.000 A at -36.87 degrees
Primary no-load current = 0.516 A at -53.13 degrees
Primary input current = 50.495 A at -37.03 degrees
Primary input voltage = 4951.278 V at 1.30 degrees
Voltage regulation = 3.152 %,
Transformer efficiency = 97.927 %

Maximum efficiency is 98.015 percent, occurs at 177.757 kVA
with 0.80 pf.

At the end of this analysis the program menu is displayed.

3.9 THREE-PHASE TRANSFORMER CONNECTIONS

Three-phase power is transformed by use of three-phase units. However, in large
extra high voltage (EHV) units, the insulation clearances and shipping limitations
may require a bank of three single-phase transformers connected in three-phase
arrangements.
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The primary and secondary windings can be connected in either wye (Y) or
delta (A) configurations. This results in four possible combinations of connections:
Y-Y, A-A, Y-A and A-Y shown by the simple schematic in Figure 3.17. In this
diagram, transformer windings are indicated by heavy lines. The windings shown
in parallel are located on the same core and their voltages are in phase. The Y-Y

B b Beo c
Ae oC Ao oC
C c a
n a n
B —————0} B b
FIGURE 3.17

Three-phase transformer connections.

connection offers advantages of decreased insulation costs and the ava11ab1hty of
the neutral for grounding purposes. However, because of problems associated with
third harmonics and unbalanced operation, this connection is rarely used. To elimi-
nate the harmonics, a third set of windings, called a tertiary winding, connected in
A is normally fitted on the core to provide a path for the third harmonic currents.
This is known as the three-winding transformer. The tertiary winding can be loaded
with switched reactors or capacitors for reactive power compensation. The A—A
provides no neutral connection and each transformer must withstand full line-to-
line voltage. The A connection does, however, provide a path for third harmonic
currents to flow. This connection has the advantage that one transformer can be re-
moved for repair and the remaining two can continue to deliver three-phase power
at a reduced rating of 58 percent of the original bank. This is known as the V
connection. The most common connection is the Y-A or A-Y. This connection is
more stable with respect to unbalanced loads, and if the Y connection is used on the
high voltage side, insulation costs are reduced. The Y-A connection is commonly
used to step down a high voltage to a lower voltage. The neutral point on the high
voltage side can be grounded. This is desirable in most cases. The A—Y connection
is commonly used for stepping up to a high voltage.

RPN S
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3.9.1 THE PER-PHASE MODEL OF
A THREE-PHASE TRANSFORMER

In Y-Y and A-A connections, the ratio of the line voltages on HV and LV sides are
the same as the ratio of the phase voltages on the HV and LV sides. Furthermore,
there is no phase shift between the corresponding line voltages on the HV and LV
sides. However, the Y-A and the A-Y connections will result in a phase shift of
30° between the primary and secondary line-to-line voltages. The windings are
arranged in accordance to the ASA (American Standards Association) such that
the line voltage on the HV side leads the corresponding line voltage on the LV side
by 30° regardless of which side is Y or A. Consider the Y-A schematic diagram
shown in Figure 3.17. The positive phase sequence voltage phasor diagram for this
connection is shown in Figure 3.18, where Vj, is taken as reference. Let the Y

VCn

Voe

FIGURE 3.18
30° phase shift in line-to-line voltages of Y-A connection.

connection be the high voltage side shown by letter H and the A connection the
low voltage side shown by X. We consider phase a only and use subscript L for
line and P for phase quantities. If Ny is the number of turns on one phase of
the high voltage winding and Nx is the number of turns on one phase of the low
voltage winding, the transformer turns ratio is ¢ = Ny /Nx = Vyp/Vxp. The
relationship between the line voltage and phase voltage magnitudes is

Vur = V3 Vgp
Vxr =Vxp
Therefore, the ratio of the line voltage' magnitudes for Y~A transformer is

VL _ s, (3.55)
Vxir

Because the core losses and magnetization current for power transformers are on
 the order of 1 percent of the maximum ratings, the shunt impedance is neglected
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and only the winding resistance and leakage reactance are used to model the trans-
former. In dealing with Y-A or A-Y banks, it is convenient to replace the A
connection by an equivalent Y connection and then work with only one phase.
Since for balanced operations, the Y neutral and the neutral of the equivalent Y
of the A connection are at the same potential, they can be connected together and
represented by a neutral conductor. When the equivalent series impedance of one
transformer is referred to the delta side, the A connected impedances of the trans-
former are replaced by equivalent Y-connected impedances, given by Zy = Za /3.
The per phase equivalent model with the shunt branch neglected is shown in Fig-
ure 3.19. Z.; and Z,.2 are the equivalent impedances based on the line-to-neutral
connections, and the voltages are the line-to-neutral values.

Zel - Rel + lel Ze2 = Re2 + le2

I

1 Vi=181, Vi = Vi Va

o—

21

FIGURE3.19
The per phase equivalent circuit.

3.10 AUTOTRANSFORMERS

Transformers can be constructed so that the primary and secondary coils are electri-
cally connected. This type of transformer is called an autotransformer. A conven-
tional two-winding transformer can be changed into an autotransformer by con-
necting the primary and secondary windings in series. Consider the two-winding
transformer shown in Figure 3.20(a). The two-winding transformer is converted
to an autotransformer arrangement as shown in Figure 3.20(b) by connecting the
two windings electrically in series so that the polarities are additive. The winding
from X; to X, is called the series winding, and the winding from H; to Hs is
called the common winding. From an inspection of this figure it follows that an
autotransformer can operate as a step-up as well as a step-down transformer. In
both cases, winding part H; H, is common to the primary as well as the secondary
side of the transformer. The performance of an autotransformer is governed by the
fundamental considerations already discussed for transformers having two separate
windings. For determining the power rating as an autotransformer, the ideal trans-
former relations are ordinarily used, which provides an adequate approximation to
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the actual transformer values.

Iy
—
O;
+ P X
; oy N W l 4L
o 1 N1 : N2 2 . X, IL
+ Xl. .Hl + VH Hl. +
Vi Va N V3lh v
X o . ml
(a) . (b)

FIGURE 3.20

(2) Two-winding transformer, (b) reconnected as an autotransformer.

From Figure 3.20(a), the two-winding voltages and currents are related by

i M

I 3.56

%N, (3.56)
and

I, N;

LA 3.57

LN, a (3.57)

where a is the turns ratio of the two-winding transformer. From Figure 3.20(b), we
have

Ve =V2+ W, (3.58)
Substituting for V; from (3.56) into (3.58) yields
N .
Vi =Vat+ 2V, (3.59)
N,

Since Vo = Vi, the voltage relationship between the two sides of an autotrans-
former becomes

N
Ve =V, + ~N—2VL
=1+aV (3.60)
or
EI- =1+4a 3.61)




3.10. AUTOTRANSFORMERS 79

Since the transformer is ideal, the mmf due to I; must be equal and opposite to the
mmf produced by 5. As a result, we have

Nol = NiIh (3.62)

From Kirchhoff’s law, Iy = I, — I, and the above equation becomes

No(Ip, — ) = NIy (3.63)
or
I, = J_V}_i__]!%_rl (3.64)
Ny

Since I) = Iy, the current relationship between the two sides of an autotrans-
former becomes

I,

=1+a (3.65)
Iy

The ratio of the apparent power rating of an autotransformer to a two-winding
transformer, known as the power rating advantage, is found from

Sauto _ (Vl +V2)I1 . N2 1

S Vil TN T, (3.66)

From (3.66), we can see that a higher rating is obtained as an autotransformer
with a higher number of turns of the common winding (/V2). The higher rating
as an autotransformer is a consequence of the fact that only Sa_,, is transformed
by the electromagnetic induction. The rest passes from the primary to secondary
without being coupled through the transformer’s windings. This is known as the
conducted power. Compared with a two-winding transformer of the same rating,
autotransformers are smaller, more efficient, and have lower internal impedance.
Three-phase autotransformers are used extensively in power systems where the
voltages of the two systems coupled by the transformers do not differ by a factor
greater than about three.

Example 3.5

A two-winding transformer is rated at 60 kVA, 240/1200 V, 60 Hz. When oper-
ated as a conventional two-winding transformer at rated load, 0.8 power factor, its
efficiency is 0.96. This transformer is to be used as a 1440/1200-V step-down au-
totransformer in a power distribution system.

(a) Assuming ideal transformer, find the transformer kVA rating when used as an
autotransformer.
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(b) Find the efficiency with the kVA loading of part (a) and 0.8 power factor.

The two-winding transformer rated currents are:

60, 000
I = 510 = 250 A
60,000
1200 =50 A

The autotransformer connection is as shown in Figure 3.21.

+ [ ]
240 V l250 A
Ip =300 A
—>
1440V o i
1200 V T50 A 1200 V

- _
FIGURE 3.21

* Auto transformer connection for Example 3.5.
(2) The autotransformer secondary current is
I, =250 + 50 = 300 A
With windings carrying rated currents, the autotransformer rating is
S = (1200)(300)(1073) = 360 kVA
Therefore, the power advantage of the autotransformer is

Sauto _ 360

Spw 60 0

(b) When operated as a two-winding transformer at full-load, 0.8 power factor, the
losses are found from the efficiency formula

(60)(0.8)
(60)(0.8) + Pioss

Solving the above equation, the total transformer loss is

48(1 = 0.96)
0.96

= 0.96

Pioss = = 2.0 kW
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Since the windings are subjected to the same rated voltages and currents as the two-
winding transformer, the autotransformer copper loss and the core loss at the rated
values are the same as the two-winding transformer. Therefore, the autotransformer
efficiency at rated load, 0.8 power factor, is

(360)(0.8)

= e = 99.31
n (360)(0.8)+2X100 99.31 percent

3.10.1 AUTOTRANSFORMER MODEL

When a two-winding transformer is connected as an autotransformer, its equiva-
lent impedance expressed in per-unit is much smaller compared to the equivalent
value of the two-winding connection. It can be shown that the effective per-unit
impedance of an autotransformer is smaller by a factor equal to the reciprocal of
the power advantage of the autotransformer connection. It is common practice to
consider an autotransformer as a two-winding transformer with its two winding
connected in series as shown in Figure 3.22, where the equivalent impedance is
referred to the Ny-turn side.

R, X,
i MA At . . _C’)_
Vi M Ny

ol
of

FIGURE 3.22
Autotransformer equivalent circuit.

3.11 THREE-WINDING TRANSFORMERS

Transformers having three windings are often used to interconnect three circuits
which may have different voltages. These windings are called primary, secondary,
and tertiary windings. Typical applications of three-winding transformers in power
systems are for the supply of two independent loads at different voltages from the
same source and interconnection of two transmission systems of different voltages.
Usually the tertiary windings are used to provide voltage for auxiliary power pur-
poses in the substation or to supply a local distribution system. In addition, the
switched reactor or capacitors are connected to the tertiary bus for the purpose
of reactive power compensation. Sometimes three-phase Y-Y transformers and Y-

gt 1
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connected autotransformers are provided with A-connected tertiary windings for
harmonic suppression. ”

3.11.1 THREE-WINDING TRANSFORMER MODEL

If the exciting current of a three-winding transformer is neglected, it is possible to
draw a simple single-phase equivalent T-circuit as shown in Figure 3.23.

B e

FIGURE 3.23
Equivalent circuit of three-winding transformer.

Three short-circuit tests are carried out on a three-winding transformer with
Np, Ns, and N turns per phase on the three windings, respectively. The three tests
are similar in that in each case one winding is open, one shorted, and reduced volt-
age is applied to the remaining winding. The following impedances are measured
on the side to which the voltage is applied.

Zps = impedance measured in the primary circuit with the secondary
short-circuited and the tertiary open.
Zpt = impedance measured in the primary circuit with the tertiary short-
circuited and the secondary open.
Zy = impedance measured in the secondary circuit with the tertiary
short-circuited and the primary open.
Referring Z, to the primary side, we obtain

N 2
Zg = (]—V:i) i (3.67)

If Zp, Zs, and Z, are the impedances of the three separate windings referred to the
primary side, then

Zps = Zn+ Zs
Zpt = Zp+ 2, (3.68)
Zst = Zs + Zt
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Solving the above'equations, we have

1

1
1

3.12 VOLTAGE CONTROL OF TRANSFORMERS

Voltage control in transformers are required to compensate for varying voltage
drops in the system and to control reactive power flow over transmission lines.
Transformers may also be used to control phase angle and, therefore, active power
flow. The two commonly used methods are tap changing transformers and regulat-
ing transformers.

3.12.1 TAP CHANGING TRANSFORMERS

Practically all power transformers and many distribution transformers have taps in
one or more windings for changing the turns ratio. This method is the most popular
since it can be used for controlling voltages at all levels. Tap changing, by altering
the voltage magnitude, affects the distribution of vars and may therefore be used to
control the flow of reactive power. There are two types of tap changing transformers

(i) Off-load tap changing transformers.
(i1) Tap changing under load (TCUL) transformers.

The off-load tap changing transformer requires the disconnection of the trans-
former when the tap setting is to be changed. Off-load tap changers are used when
it is expected that the ratio will need to be changed only infrequently, because of
load growth or some seasonal change. A typical transformer might have four taps
in addition to the nominal setting, with spacing of 2.5 percent of full-load voltage
between them. Such an arrangement provides for adjustments of up to 5 percent
above or below the nominal voltage rating of the transformer.

Tap changing under load (TCUL) is used when changes in ratio may be fre-
quent or when it is undesirable to de-energize the transformer to change a tap. A
large number of units are now being built with load tap changing equipment. It is
used on transformers and autotransformers for transmission tie, for bulk distribu-
tion units, and at other points of load service. Basically, a TCUL transformer is
a transformer with the ability to change taps while power is connected. A TCUL



84 3. GENERATOR AND TRANSFORMER MODELS; THE PER-UNIT SYSTEM

transformer may have built-in voltage sensing circuitry that automatically changes
taps to keep the system voltage constant. Such special transformers are very com-
mon in modern power systems. Special tap changing gear are required for TCUL
transformers, and the position of taps depends on a number of factors and requires
special consideration to arrive at an optimum location for the TCUL equipment.
Step-down units usually have TCUL in the low voltage winding and de-energized
taps in the high voltage winding. For example, the high voltage winding might be
equipped with a nominal voltage turns ratio plus four 2.5 percent fixed tap settings
to yield +5 percent buck or boost voltage. In addition to this, there could be pro-
vision, on the low voltage windings, for 32 incremental steps of -g— each, giving an
automatic range of +10 percent.

Tapping on both ends of a radial transmission line can be adjusted to com-
pensate for the voltage drop in the line. Consider one phase of a three-phase trans-
mission line with a step-up transformer at the sending end and a step-down trans-
former at the receiving end of the line. A single-line representation is shown in
Figure 3.24, where ts and tp, are the tap setting in per-unit. In this diagram, V; is
the supply phase voltage referred to the high voltage side, and Vj is the load phase
voltage, also referred to the high voltage side. The impedance shown includes the

Vi Vs Vr vy

Z=RHjX L > ]
HH“WW":'Q 1
01

1:tg tr

FIGURE 3.24
A radial line with tap changing transformers at both ends.

line impedance plus the referred impedances of the sending end and the receiving
end transformers to the high voltage side. If Vg and Vg are the phase voltages at
both ends of the line, we have

FIGURE 3.25
Voltage phasor diagram.
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Ve =Vs+ (R+jX)I (3.70)

The phasor diagram for the above equation is shown in Figure 3.25.

The phase shift § between the two ends of the line is usually small, and we
can neglect the vertical component of Vg. Approximating Vg by its horizontal com-
ponent results in

|Vs| = |Vr| + ab + de
= |Vg| + |[I|Rcos @ + |I| X sinf (3.71)

Substituting for |I| from Py = |Vg||I| cos § and Qg = |Vr||I|sin @ will result in

RP;+ XQg

Vs| = [Va| +
|Vs| = |Vrl A

(372

Since Vs = tgV{ and Vg = tgVj, the above relation in terms of V{, and V;
becomes

RP, + X
ts|Vi| = tr|Vj| + —2 1250 : Qs (3.73)
tr| Vsl
or
1 RPy+ XQy
tg = ——— (tR VI + ——) (3.74)
ARG =171

Assuming the product of tg and ¢p, is unity, i.e., tgtg = 1, and substituting for tg
in (3.74), the following expression is found for ¢g.

(3.75)

Example 3.6

A three-phase transmission line is feeding from a 23/230-kV transformer at its
sending end. The line is supplying a 150-MVA, 0.8 power factor load through a
step-down transformer of 230/23 kV. The impedance of the line and transformers
at 230 kV is 18 + 560 €2. The sending end transformer is energized from a 23-kV
supply. Determine the tap setting for each transformer to maintain the voltage at
the load at 23 kV.

PRSI
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The load real and reactive power per phase are
1
Py = 5(150)(0.8) =40 MW
1
Qs = 5(150)(0.6) = 30 Mvar

The source and the load phase voltages referred to the high voltage side are

From (3.75), we have

T
ts = 1 — (8)[@0)+(6E0)(30) 1.08 pu
(230//3)2

and

1
th = —— — 0.2
R=1og = 0-926 pu

3.122 REGULATING TRANSFORMERS OR BOOSTERS

Regulating transformers, also known as boosters, are used to change the voltage
magnitude and phase angle at a certain point in the system by a small amount. A i
booster consists of an exciting transformer and a series transformer.

VOLTAGE MAGNITUDE CONTROL

Figure 3.26 shows the connection of a regulating transformer for phase a of a three-
phase system for voltage magnitude control. Other phases have identical arrange-
ment. The secondary of the exciting transformer is tapped, and the voltage obtained
from it is applied to the primary of the series transformer. The corresponding volt-
age on the secondary of the series transformer is added to the input voltage. Thus,
the output voltage is

Vin = Van + AVyy (3.76)

Since the voltages are in phase, a booster of this type is called an in-phase booster.
The output voltage can be adjusted by changing the excitation transformer taps.
By changing the switch from position 1 to 2, the polarity of the voltage across the
series transformer is reversed, so that the output voltage is now less than the input
voltage.
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=}

o )
+ +
Van VG{TL
,_transformer
_ Exciting transformer _
o o o
FIGURE 3.26

Regulating transformer for voltage magnitude control.

PHASE ANGLE CONTROL

Regulating transformers are also used to control the voltage phase angle. If the
injected voltage is out of phase with the input voltage, the resultant voltage will
have a phase shift with respect to the input voltage. Phase shifting is used to control
active power flow at major intertie buses. A typical arrangement for phase a of a
three-phase system is shown in Figure 3.27.

a AVbc

o U, o
Van ob oVa,n

+ Series

Voe ; transformer

o—C i - )
= n xciting tran-s ormer ’
FIGURE 3.27

Regulating transformer for voltage phase angle control.

The series transformer of phase a is supplied from the secondary of the exciting
transformer bc. The injected voltage AV, is in quadrature with the voltage Vg,
thus the resultant voltage V,,,, goes through a phase shift «, as shown in Figure 3.28.

The output voltage is
V(;n = Von + Z3‘/170 3.77)

Similar connections are made for the remaining phases, resulting in a balanced
three phase output voltage. The amount of phase shift can be adjusted by changing
the excitation transformer taps. By changing the switch from position 1 to 2, the

kot B
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FIGURE 3.28

Voltage phasor diagram showing phase shifting effect for phase a.

output voltage can be made to lag or lead the input voltage. The advantages of the
regulating transformers are

1. The main transformers are free from tappings.

2. The regulating transformers can be used at any intermediate point in the
system.

3. The regulating transformers and the tap changing gears can be taken out of
service for maintenance without affecting the system.

3.13 THE PER-UNIT SYSTEM

The solution of an interconnected power system having several different voltage
levels requires the cumbersome transformation of all impedances to a single volt-
age level. However, power system engineers have devised the per-unit system such
that the various physical quantities such as power, voltage, current and impedance
are expressed as a decimal fraction or multiples of base quantities. In this system,
the different voltage levels disappear, and a power network involving generators,
transformers, and lines (of different voltage levels) reduces to a system of simple
impedances. The per-unit value of any quantity is defined as

actual quantity

uantity in per-unit = -
Q yinp base value of quantity

(3.78)
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For example,

S |4 I Z
G T

where the numerators (actual values) are phasor quantities or complex values and
the denominators (base values) are always real numbers. A minimum of four base
quantities are required to completely define a per-unit system: volt-ampere, volt-
age, current, and impedance. Usually, the three-phase base volt-ampere Sp or
MVAp and the line-to-line base voltage Vp or kVp are selected. Base current
and base impedance are then dependent on Sg and Vp and must obey the circuit
laws. These are given by

Spu =

SB

Ip = —— 3.79
B T3Va (3.79)
and
Vi 3
Zg = L\/_ (3.80)
Ip
Substituting for I'g from (3.79), the base impedance becomes
(V)
g = ———
B Sp
(kVB)2
Zg = .
B= v Ap (3.81)

The phase and line quantities expressed in per-unit are the same, and the circuit
laws are valid, i.e.,

Spu = Vpulpu (3.82)
and
Vpu = Zpquu (3.83)

The load power at its rated voltage can also be expressed by a per-unit impedance.
If S (34) is the complex load power, the load current per phase at the phase voltage
Vp is given by

The phase current in terms of the ohmic load impedance is

ﬁ

Ip =
P=g

(3.85)
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Substituting for Ip from (3.85) into (3.84) results in the ohmic value of the load
impedance

V; 2
Zp = ?9' Gl
L(3¢)
= Wenl (3.86)
S1(s0)
From (3.81) the load impedance in per-unit is
Zp _|Vi-rL|* SB
Ly = — = (3.87)
" Zs Ve | Sie)
or _
2
Zpy = [Vl (3.88)
S*
L(pu)

314 CHANGE OF BASE

The impedance of individual generators and transformers, as supplied by the man-
ufacturer, are generally in terms of percent or per-unit quantities based on their own
ratings. The impedance of transmission lines are usually expressed by their ohmic
values. For power system analysis, all impedances must be expressed in per unit on
a common system base. To accomplish this, an arbitrary base for apparent power is
selected; for example, 100 MVA. Then, the voltage bases must be selected. Once a
voltage base has been selected for a point in a system, the remaining voltage bases
are no longer independent; they are determined by the various transformer turns
ratios. For example, if on a low-voltage side of a 34.5/115-kV transformer the base
voltage of 36 kV is selected, the base voltage on the high-voltage side must be,
36(115/34.5) = 120 kV. Normally, we try to select the voltage bases that are the
same as the nominal values.

Let Z% be the per-unit impedance on the power base S99 and the voltage
base V', which is expressed by

d
old _ ZQ = Zg SoBl (3 89)
= = — .
p Z%ld (Vgld)2
Expressing Zq to a new power base and a new voltage base, results in the new
per-unit impedance

Zg Spew

Zipy = = Q(vgew)2

e = e = (3.90)
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From (3.89) and (3.90), the relationship between the old and the new per-unit val-
ues is

new old Sgew V}gld ’
Z5e = Il \ g (3.91)

If the volfage bases are the same, (3.91) reduces to

Snew
Zpew = zold=B (3.92)

pu S%ld

The advantages of the per-unit system for analysis are described below.

¢ The per-unit system gives us a clear idea of relative magnitudes of various
quantities, such as voltage, current, power and impedance.

e The per-unit impedance of equipment of the same general type based on their
own ratings fall in a narrow range regardless of the rating of the equipment.
Whereas their impedance in ohms vary greatly with the rating.

e The per-unit values of impedance, voltage and current of a transformer are
the same regardless of whether they are referred to the primary or the sec-
ondary side. This is a great advantage since the different voltage levels dis-
appear and the entire system reduces to a system of simple impedance.

e The per-unit systems are ideal for the computerized analysis and simulation
of complex power system problems.

e The circuit laws are valid in per-unit systems, and the power and voltage
equations as given by (3.82) and (3.83) are simplified since the factors of v/3
and 3 are eliminated in the per-unit system.

Example 3.7 demonstrates how a per-unit impedance diagram is obtained for
a simple power system network.

Example 3.7

The one-line diagram of a three-phase power system is shown in Figure 3.29. Select
a common base of 100 MVA and 22 kV on the generator side. Draw an impedance
diagram with all impedances including the load impedance marked in per-unit. The
manufacturer’s data for each device is given as follow:

e
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Ty T;

1 C 2 Line 1 N
! 220 kV
: T3 5 T :
: g : Line 2 C ‘1 Load
110kV

FIGURE 3.29
One-line diagram for Example 3.7.

—w

—A—

G: 90MVA  22kV X=18%
T3: 50MVA  22/220kV X=10%
I;: 40MVA  220/11kV X =60%
T3: 40MVA  22/110kV X =64%
Ty: 40 MVA 110/11kV X =8.0%
M: 665MVA 1045kV X =185%

The three-phase load at bus 4 absorbs 57 MVA, 0.6 power factor lagging at 10.45
kV. Line 1 and line 2 have reactances of 48.4 and 65.43 §2, respectively.

First, the voltage bases must be determined for all sections of the network. The
generator rated voltage is given as the base voltage at bus 1. This fixes the voltage
bases for the remaining buses in accordance to the transformer turns ratios. The
base voltage Vg; on the LV side of T} is 22 kV. Hence the base on its HV side is

2
Vay = 22(2120) =220 kV

This fixes the base on the HV side of T5 at Vigg = 220 kV, and on its LV side at

u

Vba = 220(55-

)=11 kV

Similarly, the voltage base at buses 5 and 6 are

1
Ve = Vg = 22(—5122) =110 kV
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Since generator and transformer voltage bases are the same as their rated values,
their per-unit reactances on a 100 MVA base, from (3.92) are

100
: X =0. — )} =02
G X 018(90) 0.20 pu
100
: =0. — =02
. X 010<5O) 0.20 pu
100
: X =0. — ) =01
Ty X 006(40) 0.15 pu
T3: X =0.064 <—%%Q) =0.16 pu

100
T4. X =0.08 (E) =0.2 pu

The motor reactance is expressed on its nameplate rating of 66.5 MVA and 10.45
kV. However, the base voltage at bus 4 for the motor is 11 kV. From (3.91) the
motor reactance on a 100 MVA, 11-kV base is

100 \ /10.45\2

Impedance bases for lines 1 and 2, from (3.81) are

(220)?
Zpy = ——— =484
B2 = Tgp 484 @
(110)?
Zps = =121 Q
55~ 100
Line 1 and 2 per-unit reactances are
Linel: X = (%) =0.10 pu
65.43
Line2: X ={—— ) =0.54
ine < 91 ) 0.54 pu

The load apparent power at 0.6 power factor lagging is given by
SL(3¢) = 57[53130 MVA
Hence, the load impedance in ohms is

g - Vi) _ (10.45)°
LTSy B7/-53.13°

= 1.1495 + j1.53267
(3¢) )

i S
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The base impedance for the load is

(11)?
100
Therefore, the load impedance in per-unit is

1.1495 + j1.53267

=121 Q

Zpy =

Zi(pu) = 1ol = 0.95 4+ j1.2667 pu
The per-unit equivalent circuit is shown in Figure 3.30.
1 j0.20 §0.10 j0.15 4
Y Y YYD YL
I
j0.16 70.54 70.20
I
0.95
A0, |2z Erm
71.2667
FIGURE 3.30

Per-unit impedance diagram for Example 3.7.

Example 3.8
The motor of Example 3.7 operates at full-load 0.8 power factor leading at a termi-
nal voltage of 10.45 kV.

(a) Determine the voltage at the generator bus bar (bus 1).
(b) Determine the generator and the motor internal emfs.

(2) The per-unit voltage at bus 4, taken as reference is

_10.45

Vi= = 0.95/0° pu
The motor apparent power at 0.8 power factor leading is given by
Sm = 665 /—36.87° pu

100




3.14. CHANGE OF BASE 95

Therefore, current drawn by the motor is

_ Sy 0.665/36.87
T VE T 0.95/00

Im =0.56 +j0.42 pu

and current drawn by the load is

Vi 0.9520°

I = — =
L=z, 7 095+ j1.2667

=0.36 — j0.48 pu

Total current drawn from bus 4 is
I=1Ip,+ I = (0.56 + j0.42) + (0.36 — j0.48) = 0.92 — j0.06 pu.
The equivalent reactance of the parallel branches is

0.45 x 0.9

= 229 X509 03
1= 0453109 05 P

The generator terminal voltage is

Vi = Vi + ZyI = 0.95/0° + j0.3(0.92 — j0.06) = 0.968 + j0.276
=1.0/15.91° pu
=22/15.91° kV

(b) The generator internal emf is

Ey=Vi+ Z4I =0.968 + j0.276 + 70.20(0.92 — 50.06) = 1.0826/25.14° pu
= 23.82/25.14° kV

and the motor internal emf is

Em =V = ZmIn = 0.95 + jO — j0.25(0.56 -+ j0.42) = 1.064/—7.56° pu
= 11.71/-7.56° kV

PROBLEMS

3.1. A three-phase, 318.75-kVA, 2300-V alternator has an armature resistance of
0.35 (¥/phase and a synchronous reactance of 1.2 {}/phase. Determine the
no-load line-to-line generated voltage and the voltage regulation at

(a) Full-load kVA, 0.8 power factor lagging, and rated voltage.
(b) Full-load kVA, 0.6 power factor leading, and rated voltage.

s N
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3.2

3.3.

34.

A 60-MVA, 69.3-kV, three-phase synchronous generator has a synchronous
reactance of 15 {}/phase and negligible armature resistance.

(a) The generator is delivering rated power at 0.8 power factor lagging at the
rated terminal voltage to an infinite bus bar. Determine the magnitude of the
generated emf per phase and the power angle 8.

(b) I the generated emf is 36 kV per phase, what is the maximum three-
phase power that the generator can deliver before losing its synchronism? -

(c) The generator is delivering 48 MW to the bus bar at the rated voltage
with its field current adjusted for a generated emf of 46 kV per phase. Deter-
mine the armature current and the power factor. State whether power factor
is lagging or leading?

A 24,000-kVA, 17.32-kV, 60-Hz, three-phase synchronous generator has a
synchronous reactance of 5 (/phase and negligible armature resistance.

(a) At a certain excitation, the generator delivers rated load, 0.8 power factor
lagging to an infinite bus bar at a line-to-line voltage of 17.32 kV. Determine
the excitation voltage per phase.

(b) The excitation voltage is maintained at 13.4 kV/phase and the terminal
voltage at 10 kV/phase. What is the maximum three-phase real power that
the generator can develop before pulling out of synchronism?

(c) Determine the armature current for the condition of part (b).
A 34.64-kV, 60-MVA, three-phase salient-pole synchronous generator has a

direct axis reactance of 13.5 ) and a quadrature-axis reactance of 9.333 .
The armature resistance is negligible.

(a) Referring to the phasor diagram of a salient-pole generator shown in Fig-
ure 3.8, show that the power angle § is given by

6:tan_l( Xqlla] cos @ )

V + Xy|I,|sin @

(b) Compute the load angle § and the per phase excitation voltage E when
the generator delivers rated MVA, 0.8 power factor lagging to an infinite bus
bar of 34.64-kV line-to-line voltage.

(c) The generator excitation voltage is kept constant at the value found in
part (b). Use MATLAB to obtain a plot of the power angle curve, i.e., equa-
tion (3.32) over a range of § = 0:0.05:180°. Use the command Pmax, k =
max(P); dmax = d(k), to obtain the steady-state maximum power Pmax
and the corresponding power angle dmax.
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0.2+ j0.45 0 0.002 + 50.0045 ©
o—>— AN~ A~
+1 Ip I I,
I, Ln
Vi 1000 03 7150030 B9 C B, v, D 150KVA
FIGURE 3.31

Transformer circuit for Problem 3.5

3.5. A 150-kVA, 2400/240-V single-phase transformer has the parameters as
shown in Figure 3.31.

(a) Determine the equivalent circuit referred to the high-voltage side.

(b) Find the primary voltage and voltage regulation when transformer is op-
erating at full load 0.8 power factor lagging and 240 V.

(c) Find the primary voltage and voltage regulation when the transformer is
operating at full-load 0.8 power factor leading.

(d) Verify your answers by running the trans program in MATLAB and ob-
tain the transformer efficiency curve.

3.6. A 60-kVA, 4800/2400-V single-phase transformer gave the following test
results: :

1. Rated voltage is applied to the low voltage winding and the high volt-
age winding is open-circuited. Under this condition, the current into the low
voltage winding is 2.4 A and the power taken from the 2400 V source is
3456 W. ’

2. A reduced voltage of 1250 V is applied to the high voltage winding and
the low voltage winding is short-circuited. Under this condition, the current
flowing into the high voltage winding is 12.5 A and the power taken from
the 1250 V source is 4375 W.

(a) Determine parameters of the equivalent circuit referred to the high volt-
age side.

(b) Determine voltage regulation and efficiency when transformer is operat-
ing at full-load, 0.8 power factor lagging, and a terminal voltage of 2400 V.

(c) What is the load kVA for maximum efficiency and the maximum effi-
ciency at 0.8 power factor?

(d) Determine the efficiency when transformer is operating at 3/4 full-load,
0.8 power factor lagging, and a terminal voltage of 2400 V.
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3.7.

3.8.

3.9.

3.10.

3.11.

3.12.

(e) Verify your answers by running the trans program in MATLAB and obtain
the transformer efficiency curve.

A two-winding transformer rated at 9-kVA, 120/90-V, 60-HZ has a core loss
of 200 W and a full-load copper loss of 500 W.

(a) The above transformer is to be connected as an auto transformer to supply
aload at 120 V from a 210-V source. What kVA load can be supplied without
exceeding the current rating of the windings? (For this part assume an ideal
transformer.)

(b) Find the efficiency with the kVA loading of part (a) and 0.8 power factor.

Three identical 9-MVA, 7.2-kV/4.16-kV, single-phase transformers are con-
nected in wye on the high-voltage side and delta on the low voltage side. The
equivalent series impedance of each transformer referred to the high-voltage
side is 0.12 + j0.82 €2 per phase. The transformer supplies a balanced three-
phase load of 18 MVA, 0.8 power factor lagging at 4.16 kV. Determine the
line-to-line voltage at the high-voltage terminals of the transformer.

A 400-MVA, 240-kV/24-kV, three-phase Y-A transformer has an equivalent
series impedance of 1.2 + j6 § per phase referred to the high-voltage side.
The transformer is supplying a three-phase load of 400-MVA, 0.8 power
factor lagging at a terminal voltage of 24 kV (line to line) on its low-voltage
side. The primary is supplied from a feeder with an impedance of 0.6 +
71.2  per phase. Determine the line-to-line voltage at the high-voltage ter-
minals of the transformer and the sending-end of the feeder.

In Problem 3.9, with transformer rated values as base quantities, express all
impedances in per-unit. Working with per-unit values, determine the line-to-
line voltage at the high-voltage terminals of the transformer and the sending-
end of the feeder.

A three-phase, Y-connected, 75-MVA, 27-kV synchronous generator has a
synchronous reactance of 9.0  per phase. Using rated MVA and voltage as
base values, determine the per-unit reactance. Then refer this per-unit value
to a 100-MVA, 30-kV base.

A 40-MVA, 20-kV/400-kV, single-phase transformer has the following se-
ries impedances:

Z1=09+;1.8Qand Z, = 128 + 5288 Q

Using the transformer rating as base, determine the per-unit impedance of the
transformer from the ohmic value referred to the low-voltage side. Compute
the per-unit impedance using the ohmic value referred to the high-voltage
side.
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3.13. Draw an impedance diagram for the electric power system shown in Figure
3.32 showing all impedances in per unit on a 100-MVA base. Choose Z%V
as the voltage base for generator. The three-phase power and line-line ratings
are given below.

Gi: 90MVA 20kV X=9%
T : 80MVA 20/200kV X =16%
Ty: 80 MVA 200/20kV X =20%
G2: 90MVA 18kV X =9%

Line: 200kV X=1200Q
Load: 200 kV S = 48 MW +;64 Mvar
Ty 1 ] 5 T
A=
) C }‘—l Load )
FIGURE 3.32

One-line diagram for Problem 3.13

3.14. The one-line diagram of a power system is shown in Figure 3.33.

Ty T

C % Line 1 C N
C

D)

(! 220kV

@_ Ty | %T4E—4@
3 g_l Load

—w

A

Line 2
110kV

YN
—+
—_—

FIGURE 3.33
One-line diagram for Problem 3.14

The three-phase power and line-line ratings are given below. .
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G: 80 MVA 22kV X =24%

Ty: 50 MVA 22/220kV X =10%

Ty: 40 MVA 220122kV X =6.0%

T3: 40 MVA 22/110kV X =6.4%

Line 1: 220kV X=121Q

Line 2: 110kV X =42350Q

M: 68.85 MVA 20kV X =225%

Load: 10 Mvar 4kV A-connected capacitors

The three-phase ratings of the three-phase transformer are

Primary: Y-connected 40MVA, 110kV
Secondary: Y-conmected 40 MVA, 22 kV
Tertiary: A-connected 15 MVA, 4kV

The per phase measured reactances at the terminal of a winding with the
second one short-circuited and the third open-circuited are

Zps = 9.6% 40 MVA, 110 kV/22 kV
Zpt =7.2% 40MVA, 110kV/4kV
Zg =12% 40 MVA, 22kV/4 kV

Obtain the T-circuit equivalent impedances of the three-winding transformer
to the common 100-MVA base. Draw an impedance diagram showing all
“impedances in per-unit on a 100-MVA base. Choose 22 kV as the voltage
base for generator.

3.15. The three-phase power and line-line ratings of the electric power system
shown in Figure 3.34 are given below.

T T:
Vo IC ? Line T )2 Vim
O | 3( )E | @
FIGURE 3.34

One-line diagram for Problem 3.15

Gi: G60MVA  20kV X =9%

Ty: S50MVA  20/200kV X = 10%

Ty: 50MVA  20020kV X = 10%

M: 432MVA 18kV X =8%

Line: 200kV  Z =120 + j200

(a) Draw an impedance diagram showing all impedances in per-unit on a
100-MVA base. Choose 20 kV as the voltage base for generator.
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(b) The motor fs drawing 45 MVA, 0.80 power factor lagging at a line-to-line
terminal voltage of 18 kV. Determine the terminal voltage and the internal
emf of the generator in per-unit and in kV.

The one-line diagram of a three-phase power system is as shown in Figure
3.35. Impedances are marked in per-unit on a 100-MVA, 400-kV base. The
load at bus 2 is S3 = 15.93 MW —533.4 Mvar, and at bus 3 is S3 = 77 MW
+714 Mvar. It is required to hold the voltage at bus 3 at 400/0° kV. Working
in per-unit, determine the voltage at buses 2 and 1.

Va V3
| j0.5pu | Jj04pu |
| ] d
S S3

FIGURE 3.35
One-line diagram for Problem 3.16

3.17.

The one-line diagram of a three-phase power system is as shown in Figure
3.36. The transformer reactance is 20 percent on a base of 100 MVA, 23/115
kV and the line impedance is Z = j66.125¢2. The load at bus 2is S, = 184.8
MW +36.6 Mvar, and at bus 3 is S3 = 0 MW 3520 Mvar. It is required to
hold the voltage at bus 3 at 115/0° kV. Working in per-umt determine the
voltage at buses 2 and 1.

Vi ——
Ao
~N
Y
= j66.125 0
5 j
S3
FIGURE 3.36

One-line diagram for Problem 3.17

i



CHAPTER

4

TRANSMISSION
LINE PARAMETERS

4.1 INTRODUCTION

The purpose of a transmission network is to transfer electric energy from generat-
ing units at various locations to the distribution system which ultimately supplies
the load. Transmission lines also interconnect neighboring utilities which permits
not only economic dispatch of power within regions during normal conditions, but
also transfer of power between regions during emergencies.

All transmission lines in a power system exhibit the electrical properties of
resistance, inductance, capacitance, and conductance. The inductance and capac-
itance are due to the effects of magnetic and electric fields around the conductor.
These parameters are essential for the development of the transmission-line mod-
els used in power system analysis. The shunt conductance accounts for leakage
currents flowing across insulators and ionized pathways in the air. The leakage
currents are negligible compared to the current flowing in the transmission lines
and may be neglected.

The first part of this chapter deals with the determination of inductance and
capacitance of overhead lines. The concept of geometric mean radius, GMR and
geometric mean distance GMD are discussed, and the function [GMD, GMRL,

102
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GMRC] = gmd is developed for the evaluation of GMR and GMD. This function
is very useful for computing the inductance and capacitance of single-circuit or
double-circuit transmission lines with bundled conductors. Alternatively, the func-
tion [L, C] = gmd2LC returns the line inductance in mH per km and the shunt
capacitance in uF per km. Finally the effects of electromagnetic and electrostatic
induction are discussed.

4.2 OVERHEAD TRANSMISSION LINES

A transmission circuit consists of conductors, insulators, and usually shield wires,
as shown in Figure 4.1. Transmission lines are hung overhead from a tower usually
made of steel, wood or reinforced concrete with its own right-of-way. Steel tow-
ers may be single-circuit or double-circuit designs. Multicircuit steel towers have
been built, where the tower supports three to ten 69-kV lines over a given width
of right-of-way. Less than 1 percent of the nation’s total transmission lines are
placed underground. Although underground ac transmission would present a solu-
tion to some of the environmental and aesthetic problems involved with overhead
transmission lines, there are technical and economic reasons that make the use of
underground ac transmission prohibitive.

FIGURE 4.1
Typical lattice-type structure for 345-kV transmission line.
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The selection of an economical voltage level for the transmission line is based
on the amount of power and the distance of transmission. The voltage choice to-
gether with the selection of conductor size is mainly a process of weighing RI?
losses, audible noise, and radio interference level against fixed charges on the in-
vestment. Standard transmission voltages are established in the United States by
the American National Standards Institute (ANSI). Transmission voltage lines op-
erating at more than 60 kV are standardized at 69 kV, 115 kV, 138 kV, 161 kV,
230 kV, 345 kV, 500 kV, 765 kV line-to-line. Transmission voltages above 230 kV
are usually referred to as extra-high voltage (EHV) and those at 765 kV and above
are referred to as ultra-high voltage (UHV). The most commonly used conductor
materials for high voltage transmission lines are ACSR (aluminum conductor steel-
reinforced), AAC (all-aluminum conductor), AAAC (all-aluminum alloy conduc-
tor), and ACAR (aluminum conductor alloy-reinforced). The reason for their pop-
ularity is their low relative cost and high strength-to-weight ratio as compared to
copper conductors. Also, aluminum is in abundant supply, while copper is limited
in quantity. A table of the most commonly used ACSR conductors is stored in file
acsr.m Characteristics of other conductors can be found in conductor handbooks
or manufacturer’s literature. The conductors are stranded to have flexibility. The
ACSR conductor consists of a center core of steel strands surrounded by layers of
aluminum as shown in Figure 4.2. Each layer of strands is spiraled in the opposite
direction of its adjacent layer. This spiraling holds the strands in place.

FIGURE 4.2
Cross-sectional view of a 24/7 ACSR conductor.

Conductor manufacturers provide the characteristics of the standard conduc-
tors with conductor sizes expressed in circular mils (cmil). One mil equals 0.001
inch, and for a solid round conductor the area in circular mils is defined as the
square of diameter in mils. As an example, 1,000,000 cmil represents an area of
a solid round conductor 1 inch in diameter. In addition, code words (bird names)
have been assigned to each conductor for easy reference.

At voltages above 230 kV, it is preferable to use more than one conductor
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per phase, which is known as bundling of conductors. The bundle consists of two,
three, or four conductors. Bundling increases the effective radius of the line’s con-
ductor and reduces the electric field strength near the conductors, which reduces
corona power loss, audible noise, and radio interference. Another important ad-
vantage of bundling is reduced line reactance.

4.3 LINE RESISTANCE

The resistance of the conductor is very important in transmission efficiency eval-
uation and economic studies. The dc resistance of a solid round conductor at a
specified temperature is given by

!
Ry, = % 4.1)

where p = conductor resistivity
I = conductor length
A = conductor cross-sectional area

The conductor resistance is affected by three factors: frequency, spiraling,
and temperature.

When ac flows in a conductor, the current distribution is not uniform over
the conductor cross-sectional area and the current density is greatest at the surface
of the conductor. This causes the ac resistance to be somewhat higher than the dc
resistance. This behavior is known as skin effect. At 60 Hz, the ac resistance is
about 2 percent higher than the dc resistance.

Since a stranded conductor is spiraled, each strand is longer than the finished
conductor. This results in a slightly higher resistance than the value calculated from
4.1. ‘

The conductor resistance increases as temperature increases. This change can
be considered linear over the range of temperature normally encountered and may
be calculated from

T+t

Ry =
2 R1T+t1

4.2)

where Ry and R; are conductor resistances at to and ¢;-C°, respectively. T is a
temperature constant that depends on the conductor material. For aluminum 7" ~
228.

Because of the above effects, the conductor resistance is best determined from
manufacturers’ data.
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4.4 INDUCTANCE OF A SINGLE CONDUCTOR

A current-carrying conductor produces a magnetic field around the conductor. The
magnetic flux lines are concentric closed circles with direction given by the right-
hand rule. With the thumb pointing in the direction of the current, the fingers of the
right hand encircled the wire point in the direction of the magnetic field. When the
current changes, the flux changes and a voltage is induced in the circuit. By defi-
nition, for nonmagnetic material, the inductance L is the ratio of its total magnetic
flux linkage to the current I, given by

A
L=%

4.3)
where X = flux linkages, in Weber turns.

Consider a long round conductor with radius r, carrying a current I as shown
in Figure 4.3.

FIGURE 4.3
Flux linkage of a long round conductor.

The magnetic field intensity H,, around a circle of radius z, is constant and
tangent to the circle. The Ampere’s law relating H, to the current I, is given by

2rx
H,-dl=1, “4.4)
i |
or
p = ot “5)
2rx

where I is the current enclosed at radius z. As shown in Figure 4.3, Equation
(4.5) is all that is required for evaluating the flux linkage A of a conductor. The
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inductance of the conductor can be defined as the sum of contributions from flux
linkages internal and external to the conductor.

4.4.1 INTERNAL INDUCTANCE

A simple expression can be obtained for the internal flux linkage by neglecting the
skin effect and assuming uniform current density throughout the conductor cross
section, i.e.,

I I,
pem (4.6)
Substituting for I, in (4.5) yields
I

For a nonmagnetic conductor with constant permeability i, the magnetic flux
density is given by B, = poH,, or

I
o= ia (4.8)

where i is the permeability of free space (or air) and is equal to 47 x 10~ H/m.
The differential flux d¢ for a small region of thickness dx and one meter length of
the conductor is

by = Bydz -1 = 2L pap — (4.9)
2712

The flux d¢, links only the fraction of the conductor from the center to radius z.
Thus, on the assumption of uniform current density, only the fraction w2 /772 of
the total current is linked by the flux, i.e.,

' z? pol 3

The total flux linkage is found by integrating d\,, from 0 to .

_ Mol [T 3
)‘int = Wl‘ /0 x’dx
= Bl m @.11)
8n
From (4.3), the inductance due to the internal flux linkage is

1
Line =22 = 2 %1077 H/m (4.12)
8 2

Note that L;,, is independent of the conductor radius 7.

PP 22
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4.4.2 INDUCTANCE DUE TO EXTERNAL FLUX LINKAGE

Consider H, external to the conductor at radius z > r as shown in Figure 4.4,
Since the circle at radius z encloses the entire current, I = I and in (4.5) I, is
replaced by I and the flux density at radius z becomes

pol
By = poH, = — : 4.13
x = M0 Gy ( )

FIGURE 4.4
Flux linkage between D and Ds.

Since the entire current I is linked by the flux outside the conductor, the flux link-
age d), is numerically equal to the flux d¢z. The differential flux d¢,, for a small
region of thickness dz and one meter length of the conductor is then given by

s = ddy = Bydz -1 = 2L g (4.14)
2rx

The external flux linkage between two points D; and D, is found by integrating
dM; from Dy to D,. b '

Dy
)\e:t:t = &.I / ldx

2r Jp, =
-7 -D2 )
=2x107"'TIn—= Wb/m (4.15)
Dy
The inductance between two points external to a conductor is then
: D
Legt =2 % 1077 In 1—)2 H/m (4.16)
L
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4.5 INDUCTANCE OF SINGLE-PHASE LINES

Consider one meter length of a single-phase line consisting of two solid round
conductors of radius r; and 79 as shown in Figure 4.5. The two conductors are
separated by a distance D. Conductor 1 carries the phasor current I; referenced
into the page and conductor 2 carries return current o = —I. These currents set
up magnetic field lines that links between the conductors as shown.

OF b

FIGURE 4.5
Single-phase two-wire line.

Inductance of conductor 1 due to internal flux is given by (4.12). The flux
beyond D links a net current of zero and does not contribute to the net magnetic
flux linkages in the circuit. Thus, to obtain the inductance of conductor 1 due to
the net external flux linkage, it is necessary to evaluate (4.16) from D; = r; to
Dy = D.

D
Li(ezty =2 % 107" In - H/m 4.17)

The total inductance of conductor 1 is then

1 D -
L= 5 % 1077 4+ 2 x-10*71n;— H/m (4.18)
: 1

Equation (4.18) is often rearranged as follows:
D

Ly=2x107" <1+1n-)

4 ™

=2x10""7 (lne% +ln—1—+ln2)
T1 1

1 D
— -7
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-1 .
Let 7} = r1e” 1, the inductance of conductor 1 becomes

Li=2x10""In l, +2x1077 ln-]l2 H/m (4.20)
™
Similarly, the inductance of conductor 2 is
7.1 _7.. D
Lo=2x10 ln77+2><10 ln—l- H/m 4.21)
2

If the two conductors are identical, 7y == r9 = r and L1y = Ly = L, and the
inductance per phase per meter length of the line is given by

1 D
L=2x10"In —+ 2x1077In T H/m 4.22)

Examination of (4.22) reveals that the first term is only a function of the conductor
radius. This term is considered as the inductance due to both the internal flux and
that external to conductor 1 to a radius of 1 m. The second term of (4.22) is depen-
dent only upon conductor spacing. This term is known as the inductance spacing
Jactor. The above terms are usually expressed as inductive reactances at 60 Hz and
are available in the manufacturers table in English units.

The term 7 = re~i is known mathematically as the self-geometric mean
distance of a circle with radius 7 and is abbreviated by GMR. ' can be considered
as the radius of a fictitious conductor assumed to have no internal flux but with the
same inductance as the actual conductor with radius r. GMR is commonly referred
to as geometric mean radius and will be designated by D,. Thus, the inductance
per phase in millihenries per kilometer becomes

L=02In -ll)l mH/km (4.23)

S

4.6 FLUX LINKAGE IN TERMS OF
SELF- AND MUTUAL INDUCTANCES

The series inductance per phase for the above single-phase two-wire line can be

expressed in terms of self-inductance of each conductor and their mutual induc-

tance. Consider one meter length of the single-phase circuit represented by two

coils characterized by the self-inductances L; and Ly and the mutual inductance

L1,. The magnetic polarity is indicated by dot symbols as shown in Figure 4.6.
The flux linkages A; and ), are given by

A =Ll + Lol
Ao = Lo Iy + Loy I, 4.24)
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I2 [ 1L22

FIGURE 4.6
The single-phase line viewed as two magnetically coupled coils.

Since I, = —I;, we have

Ar = (L — L)y
)\2 = (—-L21 + L22)Iz (4.25)

Comparing (4.25) with (4.20) and (4.21), we conclude the following equivalent
expressions for the self- and mutual inductances:

1
L; =2x10""In—
"

1
Ly =2%10""In -

. T2
1
Lia=Ly=2x10""In 5 : (4.26)
The concept of self- and mutual inductance can be extended to a group of n con-
ductors. Consider n conductors carrying phasor currents Iy, Iy, ..., I,, such that
L4+L+--+L+-+1,=0 4.27)

Generalizing (4.24), the flux linkages of conductor % are/

n
N=Luli+)» Lyl; j#i (4.28)
j=1 : :
or

n
X =2x10"7 (I,- Ins+3 L %—) j#i (4.29)
"= i \

i
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4.7 INDUCTANCE OF THREE-PHASE
TRANSMISSION LINES

4.7.1 SYMMETRICAL SPACING

Consider one meter length of a three-phase line with three conductors, each with
radius r, symmetrically spaced in a triangular configuration as shown in Figure 4.7.

1,
D D
I ¢ I, b
D
FIGURE 4.7

Three-phase line with symmetrical spacing.

Assuming balanced three-pliase currents, we have

I+Iy+1.=0 (4.30)
From (4.29) the total flux linkage of phase a conductor is
7 1 -1 1
Aa§2x10 Ialnp+IbInB+IclnB (4.31)

Substituting for Iy + I, = —1I,

_ 1 1
de = 2x10 7(Ialn77—laln—D—>
D

= 2x107"I,In= (4.32)
P T

Because of symmetry, Ay, = A, = ),, and the three inductances are identical.

Therefore, the inductance per phase per kilometer length is

L=02In DE mH/km (4.33)

s

where 1’ is the geometric mean radius, GMR, and is shown by D;. For a solid

round conductor, Dy = re‘% for stranded conductor D, can be evaluated from
(4.50). Comparison of (4.33) with (4.23) shows that inductance per phase for a
three-phase circuit with equilateral spacing is the same as for one conductor of a
single-phase circuit. :
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4.7.2 ASYMMETRICAL SPACING

Practical transmission lines cannot maintain symmetrical spacing of conductors
because of construction considerations. With asymmetrical spacing, even with bal-
anced currents, the voltage drop due to line inductance will be unbalanced. Con-
sider one meter length of a three-phase line with three conductors, each with radius
7. The Conductors are asymmetrically spaced with distances shown in Figure 4.8.

FIGURE 4.8
Three-phase line with asymmetrical spacing.

The application of (4.29) will result in the following flux linkages.

1 1 1
— -7
Aa-—ZXlO (Ialn;;“l‘IblnE;-i-IclnD—w)
1 ’
Ap =2 X 1077 (Ialn— +Ibln—, + I.In ——)
12 r Dos
1 1 1
- -7
)\c-—— 2x10 (IalnE;+Ibln-D—23 +Icln P) (434)
or in matrix form
A=LI . 4.35)
where the symmetrical inductance matrix L is given by
1 1 1
s In ,7,‘1 In ‘?—12' In D_II—S

L L 1
Inp= In Dm I
For balanced three-phase currents with I, as reference, we have

I, = I,/240° = d?1,
I, =1,/120° = al, (4.37)

PP
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where the operator a = 1/120° and a? = 1/240°. Substituting in (4.34) results in

A 1 1 1
Lo=2%= —7<1— 2ln — —)
a =T 2x10 nrl—i-a an+alnD13
Ab _7( 1 1, o, 1 )
Ly A 2x10 can12+“nr,+0LlnD23 |
chﬁ:2x10‘7 (azln—l—+aln—1 +lnl,) (4.38)
I, D3 23 U

Examination of (4.38) shows that the phase inductances are not equal and they
contain an imaginary term due to the mutual inductance.

4.7.3 TRANSPOSE LINE

A per-phase model of the transmission line is required in most power system anal-
ysis. One way to regain symmetry in good measure and obtain a per-phase model
is to consider transposition. This consists of interchanging the phase configuration
every one-third the length so that each conductor is moved to occupy the next phys-
ical position in a regular sequence. Such a transposition arrangement is shown in
Figure 4.9.

D3 I

Do3
I,

FIGURE 4.9
A transposed three-phase line.

Since in a transposed line each phase takes all three positions, the inductance
per phase can be obtained by finding the average value of (4.38).

_ Lo+ Ly+ L,
=

Noting a + a? = 1/120° + 1/240° = —1, the average of (4.38) becomes

2x10°7, 1 1 1 1
L = 2= (3m=- —ln— -1
3 (3 Y n Dy " Do3 " D13)

L (4.39)
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or

L=2x10"" (ml, —In—l)
r (D12D23Dh3)3

1
— 9x 107 1p (L12D2D1a)? (4.40)
T
or the inductance per phase per kilometer length is
L=02In GMD mH/km (4.41)

S

where

GMD = {¥/Dy3D93D15 (4.42)

This again is of the same form as the expression for the inductance of one phase
of a single-phase line. GMD (geometric mean distance) is the equivalent con-
ductor spacing. For the above three-phase line this is the cube root of the prod-
uct of the three-phase spacings. D, is the geometric mean radius, GMR. For
stranded conductor D; is obtained from the manufacturer’s data. For solid con-
ductor, Dy =1’/ = re” 1,

In modern transmission lines, transposition is not generally used. However,
for the purpose of modeling, it is most practical to treat the circuit as transposed.
The error introduced as a result of this assumption is very small.

4.8 INDUCTANCE OF COMPOSITE CONDUCTORS

In the evaluation of inductance, solid round conductors were considered. However,
in practical transmission lines, stranded conductors are used. Also, for reasons of
economy, most EHV lines are constructed with bundled conductors. In this section
an expression is found for the inductance of composite conductors. The result can
be used for evaluating the G MR of stranded or bundled conductors. It is also useful
in finding the equivalent GMR and GMD of parallel circuits. Consider a single-
phase line consisting of two composite conductors = and y as shown in Figure
4.10. The current in z is I referenced into the page, and the return current in y is
—1I. Conductor z consists of n identical strands or subconductors, each with radius
rz. Conductor y consists of m identical strands or subconductors, each with radius
ry. The current is assumed to be equally divided among the subconductors. The
current per strand is I /n in = and I /m in y. The application of (4.29) will result in
the following expression for the total flux linkage of conductor a
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bQ O b Q Oc’
O

a

=0
O
O

T Y

FIGURE 4.10
Single-phase line with two composite conductors,

I 1 1 1 1
=2x107"= (In— +1 ] |
Ao =210 n(“r;+“Dab+nDac+ +nDan)

. I 1 1 1 1
—-2x1077= <ln +1n +In +---+1In )
m Do D,y Dy Do

or

T/Daa’Dab’Dac’ te Dam

A =2%10""IIn
“ Q/"":/.;DabDac «++Dap

-

(4.43)

The inductance of subconductor a is

Lo= 22 = on x 10710 V2 aa’ Dur Dac’*+* Dam (4.44)
I/n VTxDabDac o+ Dap

Using (4.29), the inductance of other subconductors in z are similarly obtained.
For example, the inductance of the subconductor n is

m, ; D
L, = Hn =2nx10""In \/Dmf Dny Dne el (4.45)
I/'n' Vrana b+ Dne
The average inductance of any one subconductor in group x is
Lop= Lot Lot Lot -+ Ly (4.46)

n

Since all the subconductors of conductor z are electrically parallel, the inductance
of z will be

Ly _La+Lb+Lc+"'+Ln

L, = 3 4.47
n n
substituting the values of L,, Ly, L, -, L, in (4.47) results in
MD
L,=2%10""In ¢ - H/meter (4.48)

GMR,
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where
GMD = "3/(DawDay -+~ Dam) -+ (Dt Dty - Dym) (4.49)
and
GMR, = "/ (DaaDap~ Dan) - (DnaDpt -~ Do) (4.50)
where Dgq = Dy - - - = Dpp, =72,

GMD is the mnth root of the product of the mnth distances between n strands of
conductor z and m strands of conductor y. GMR; is the n? root of the product of
n? terms consisting of r’ of every strand times the distance from each strand to all
other strands within group z.

The inductance of conductor y can also be similarly obtained. The geometric -

mean radius GMR, will be different. The geometric mean distance GMD, how-
ever, is the same.
Example 4.1

A stranded conductor consists of seven identical strands each having a radius r as
shown in Figure 4.11. Determine the GMR of the conductor in terms of r.

FIGURE 4.11
Cross section of a stranded conductor.

From Figure 4.11, the distance from strand 1 to all other strands is:

D13 = Dig = D17 =2r
D14 =4r

D13 = D15 = VD%4 - D25 = 2\/51"

From (4.50) the GMR of the above conductor is

GMR = 4{/(7*’~2r-2\/§r-4r~2\/§r-2r-2r)6 -7!(2r)8
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=r{/(e)t @ 3)F (2}
= 2.1767r

With a large number of strands the calculation of GMR can become very tedious.
Usually these are available in the manufacturer’s data.

4.8.1 GMR OF BUNDLED CONDUCTORS

Extra-high voltage transmission lines are usually constructed with bundled con-
ductors. Bundling reduces the line reactance, which improves the line performance
and increases the power capability of the line. Bundling also reduces the voltage
surface gradient, which in turn reduces corona loss, radio interference, and surge
impedance. Typically, bundled conductors consist of two, three, or four subcon-
ductors symmetrically arranged in configuration as shown in Figure 4.12. The sub-
- conductors within a bundle are separated at frequent intervals by spacer-dampers.
Spacer-dampers prevent clashing, provide damping, and connect the subconductors
in parallel.

FIGURE 4.12
Examples of bundled arrangements.

The GMR of the equivalent single conductor is obtained by using (4.50). If
D is the GMR of each subconductor and d is the bundle spacing, we have

for the two-subconductor bundle

D! = (D, x d)2 = /D, x d 4.51)

for the three-subconductor bundle

DY = {/(Dy x d x d)® = /D, x d2 4.52)

for the four-subconductor bundle

Db = N/(Dyxdxdxdx25)t=100D, x P (4.53)
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4.9 INDUCTANCE OF THREE-PHASE
DOUBLE-CIRCUIT LINES

A three-phase double-circuit line consists of two identical three-phase circuits. The
circuits are operated with a;—ag, b1~b2, and cj—cy in parallel. Because of geomet-
rical differences between conductors, voltage drop due to line inductance will be
unbalanced. To achieve balance, each phase conductor must be transposed within
its group and with respect to the parallel three-phase line. Consider a three-phase
double-circuit line with relative phase positions a;b;c3—cobaas, as shown in Figure
4.13.

FIGURE 4.13
Transposed double-circuit line.

The method of GMD can be used to find the inductance per phase. To do
this, we group identical phases together and use (4.49) to find the GMD between
each phase group

DAB = </Da1b1Da1b2Da2b1Dazb2
DBC = VDblchblcszzCrDbzcz

Dac = {/ Dayer Dases Dage Dase, (4.54)
The equivalent GMD per phase is then

GMD = /DapDpcDac 4.55)

Similarly, from (4.50), the GMR of each phase group is
Dsa = {/(DtDaya;)? = /DtDisas
Dsp = {/(DtDpys,)? = / DDy,
Dsc = {{/(DtDeye;)? = /Dl Dese - @56)
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where D? is the geometric mean radius of the bundled conductors given by (4.51)-
(4.53). The equivalent geometric mean radius for calculating the per-phase induc-
tance to neutral is

GMRy, = y/DsaDspPsc @.57

The inductance per phase in millihenries per kilometer is

GMD

= (.21
L=0 nGMRL

mH/km (4.58)

4.10 LINE CAPACITANCE

Transmission line conductors exhibit capacitance with respect to each other due to
the potential difference between them. The amount of capacitance between con-
ductors is a function of conductor size, spacing, and height above ground. By defi-
nition, the capacitance C is the ratio of charge q to the voltage V, given by

q
C== 4.59
v (4.59)
Consider a long round conductor with radius r, carrying a charge of ¢ coulombs

per meter length as shown in Figure 4.14.

FIGURE 4.14
Electric field around a long round conductor.

The charge on the conductor gives rise to an electric field with radial flux
lines. The total electric flux is numerically equal to the value of charge on the
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conductor. The intensity of the field at any point is defined as the force per unit
charge and is termed electric field intensity designated as E. Concentric cylinders
surrounding the conductor are equipotential surfaces and have the same electric
flux density. From Gauss’s law, for one meter length of the conductor, the electric
flux density at a cylinder of radius z is given by

9 _ 4

=1 = 4.60
A 2rz(1) (4.60)
The electric field intensity E may be found from the relation
E= D (4.61)
€0

where ¢ is the permittivity of free space and is equal to 8.85 x 1012 F/m. Substi-
tuting (4.60) in (4.61) results in
q

E= o (4.62)
2mwegx

The potential difference between cylinders from position Dy to D, is defined as
the work done in moving a unit charge of one coulomb from Dj to D; through the
electric field produced by the charge on the conductor. This is given by

Vie= [ Bdw= [ =44 In 22 4.63
2= Dy x_/pl 2wenx T= 27r50 D_1 (4.63)
The notation V15 implies the voltage drop from 1 relative to 2, that is, 1 is under-
stood to be positive relative to 2. The charge g carries its own sign.

4.11 CAPACITANCE OF SINGLE-PHASE LINES

Consider one meter length of a single-phase line consisting of two long solid round
conductors each having a radius r as shown in Figure 4.15. The two conductors are
separated by a distance D. Conductor 1 carries a charge of q; coulombs/meter
and conductor 2 carries a charge of g coulombs/meter. The presence of the sec-
ond conductor and ground disturbs the field of the first conductor. The distance of
separation of the wires D is great with respect to r and the height of conductors
is much larger compared with D. Therefore, the distortion effect is small and the
charge is assumed to be uniformly distributed on the surface of the conductors.

Assuming conductor 1 alone to have a charge of q;, the voltage between
conductor 1 and 2 is

D

a1 :
Vl?(q1) = 2—71'6‘; In _7"- - (464)
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q1 q2

D

FIGURE 4.15
Single-phase two-wire line.

Now assuming only conductor 2, having a charge of g,, the voltage between con-
ductors 2 and 1 is

D

q2
V21(Q2) = 271'60 In 7

Since Vig(g,) = —Va1(g,)> We have

q2 r
= — .65
Via(g,) 2meg In D (4.65)

From the principle of superposition, the potential difference due to presence of
both charges is

V12 = ‘/12((11) + Vig(qz) = %6—0 In In — (466)

q 2+ q2 T
'

For a single-phase line g2 = —q; = —¢q, and (4.66) reduces to

D
Vie= -4 1= Fm (4.67)
TEQ T

From (4.59), the capacitance between conductors is

TED
Ciz=—5
In ey

F/m (4.68)

Equation (4.68) gives the line-to-line capacitance between the conductors. For the
purpose of transmission line modeling, we find it convenient to define a capacitance
C between each conductor and a neutral as illustrated in Figure 4.16. Since the

1 Cia 2 1 C n C 2
O 1 F O O—AF———H0
FIGURE 4.16

Iustration of capacitance to neutral.
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vyoltage to neutral is half of V;9, the capacitance to neutral C = 2C}9, or

27(60

D
g

C =

F/m (4.69)

Recalling £9 = 8.85 x 107!2 F/m and converting to uF per kilometer, we have

_0.0556
In %

pF/km (4.70)

The capacitance per phase contains terms analogous to those derived for inductance
per phase. However, unlike inductance where the conductor geometric mean radius
(GMR) is used, in capacitance formula the actual conductor radius r is used.

4.12 POTENTIAL DIFFERENCE IN A
MULTICONDUCTOR CONFIGURATION

Consider n parallel long conductors with charges qi, g, . . . , g, coulombs/meter as
shown in Figure 4.17.

q O . Q‘In

O Q

a4 qj

FIGURE 4.17
Multiconductor configuration.

Assume that the distortion effect is negligible and the charge is uniformly
distributed around the conductor, with the following constraint

atet--+e=0 (4.71)

Using superposition and (4.63), potential difference between conductors ¢ and j
due to the presence of all charges is

V--—Li In 2 4.72)
v 211‘&'0 k=1 I Dk,‘ )

When k = i, Dj;; is the distance between the surface of the conductor and its center,
namely its radius 7. )

e BT
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413 CAPACITANCE OF THREE-PHASE LINES

Consider one meter length of a three-phase line with three long conductors, each
with radius r, with conductor spacing as shown Figure 4.18.

da |
%12 ]
Dis /@ % i
Cé/Dzz
e |
—I]— ~—I][—~ '
FIGURE 4.18

Three-phase transmission line,
Since we have a balanced three-phase system
Qo+ @p+g.=0 (4.73)

We shall neglect the effect of ground and the shield wires. Assume that the line is
transposed. We proceed with the calculation of the potential difference between a
and b for each section of transposition. Applymg (4.72) to the first section of the
transposition, Vyp, is

1 D, D23)
V. In—= In — 1 4.74
ab(r) = 5 (qa n—2 4 g, In D +gcln Dis (4.74)
Similarly, for the second section of the transposition, we have
1 Do Di3
Vot = e (00 22 4 gl g+ g B2) @)
and for the last section
1 D3 Dy
Vo = oo (w22 4 gl - +an B2) @79
The average value of V,; is
1 D12D33 D13 r
Vap = 1 ne—
“~ (3)2neo ( ot 3 T o D12Dy3Dn3
D12D23D13)
+g.1n 13 @71
ge D12D23Dy3
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or

+ gpIn

1
1 D12Ds3Di3)3
Vo = (qaln( 12 'f’ 13)3 (4.78)

2meo (D12D23D13)% )

Note that the GMD of the conductor appears in the logarithm arguments and is-
given by

GMD = /Dj2Ds3D;3 (4.79)

Therefore, V,;, is

1 GMD T
= 1 1 4.80
Similarly, we find the average voltage V. as
1 GMD T
= — o \ 4.81
Voo = g (I 222 + el s ) )
Adding (4.80) and (4.81) and substituting for g + q. = —q,, we have
1 GMD r 3¢ga ., GMD
- = —a.l = 1 4.82
Vo + Vac 2re <2qa In r da’n GMD) 2meg r (4.82)
For balanced three-phase voltages,
Vap = Van£0° — Vo £L—120°
Vae = Van£0° — Vg £—240° (4.83)
Therefore,
Vab + Vac = 3Van (4.84)
Substituting in (4.82) the capacitance per phase to neutral is
Qo 2me 0
C=-"2=_"""_ F/ 4.85
Vo oMD" 8
or capacitance to neutral in uF per kilometer is
0.0556
T

This is of the same form as the expression for the capacitance of one phase of
a single-phase line. GMD (geometric mean distance) is the equivalent conductor
spacing. For the above three-phase line this is the cube root of the product of the
three-phase spacings.

gt e
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4.14 EFFECT OF BUNDLING

The procedure for finding the capacitance per phase for a three-phase transposed
line with bundle conductors follows the same steps as the procedure in Section
3.13. The capacitance per phase is found to be

2w €0
= —gmp F/m (4.87)
e

The effect of bundling is to introduce an equivalent radius r°. The equivalent ra-
dius 7? is similar to the GMR (geometric mean radius) calculated earlier for the
inductance with the exception that radius 7 of each subconductor is used instead of
D;. If d is the bundle spacing, we obtain for the two-subconductor bundle

rP=vrxd (4.88)

for the three-subconductor bundle

= Yr x d? (4.89)

for the four-subconductor bundle

r® = 1.09v/7 x d3 (4.90)

4.15 CAPACITANCE OF THREE-PHASE
DOUBLE-CIRCUIT LINES

Consider a three-phase double-circuit line with relative phase positions a1byc; -
cabaao, as shown in Figure 4.13. Each phase conductor is transposed within its
group and with respect to the parallel three-phase line. The effect of shield wires
and the ground are considered to be negligible for this balanced condition. Fol-
lowing the procedure of section 4.13, the average voltages V, V,. and V,, are
calculated and the per-phase equivalent capacitance to neutral is obtained to be

2me
C = —2~ F/m 4.91)

ln GMR.

or capacitance to neutral in uF per kilometer is

0.0556
C=r i G pF/km (4.92)

The expression for GMD is the same as was found for inductance calculation and
is given by (4.55). The GMR,, of each phase group is similar to the GMR},, with

D
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the exception that in (4.56) r? is used instead of D?. This will result in the following
equations

rc = 1/7% Deye, (4.93)

where r? is the geometric mean radius of the bundled conductors given by (4.88) —
(4.90). The equivalent geometric mean radius for calculating the per-phase capaci-
tance to neutral is

GMR¢ = Yrarpre (4.94)

416 EFFECT OF EARTH ON THE CAPACITANCE

For an isolated charged conductor the electric flux lines are radial and are orthog-
onal to the cylindrical equipotential surfaces. The presence of earth will alter the
distribution of electric flux lines and equipotential surfaces, which will change the
effective capacitance of the line.

The earth level is an equipotential surface, therefore the flux lines are forced
to cut the surface of the earth orthogonally. The effect of the presence of earth
can be accounted for by the method of image charges introduced by Kelvin. To
illustrate this method, consider a conductor with a charge ¢ coulombs/meter at a
height H above ground. Also, imagine a charge —q placed at a depth H below
the surface of earth. This configuration without the presence of the earth surface
will produce the same field distribution as a single charge and the earth surface.
Thus, the earth can be replaced for the calculation of electric field potential by a
fictitious charged conductor with charge equal and opposite to the charge on the
actual conductor and at a depth below the surface of the earth the same as the
height of the actual conductor above earth. This imaginary conductor is called the
image of the actual conductor. The procedure of Section 4.13 can now be used for
the computation of the capacitance. '

The effect of the earth is to increase the capacitance. But normally the height
of the conductor is large as compared to the distance between the conductors,
and the earth effect is negligible. Therefore, for all line models used for balanced
steady-state analysis, the effect of earth on the capacitance can be neglected. How-
ever, for unbalanced analysis such as unbalanced faults, the earth’s effect as well
as the shield wires should be considered.

EveeT—_
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O

Example 4.2

A 500-kV three-phase transposed line is composed of one ACSR 1,272,000~
cmil, 45/7 Bittern conductor per phase with horizontal conductor configuration as
shown in Figure 4.19. The conductors have a diameter of 1.345 in and a GMR of
0.5328 in. Find the inductance and capacitance per phase per kilometer of the line.

a b C
(35— D1z =85 —(5—Dy3 = 35 —()

Dy3 =70

FIGURE 4.19
Conductor layout for Example 4.2.

Conductor radius is 7 = 323 = 0.056 ft, and GMRy, = 0.5328/12 = 0.0444 ft.
GMD is obtained using (4.42)

GMD = /35 x 35 x 70 = 44.097 ft

From (4.58) the inductance per phase is

44.097
0.0444

and from (4.92) the capacitance per phase is

L=02n = 1.38 mH/km

0.0556

In 5585

Example 4.3

The line in Example 4.2 is replaced by two ACSR 636, 000-cmil, 24/7 Rook
conductors which have the same total cross-sectional dtea of aluminum as one
Bittern conductor. The line spacing as measured from the center of the bundle is
the same as before and is shown in Figure 4.20.

a b c
0,0 0,0 0,0
+18"+ i i
—Djp = 35’ D3 = 35'—
: Dys = 70/—— !
FIGURE 4.20

Conductor layout for Example 4.3.
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The conductors have a diameter of 0.977 in and a GMR of 0.3924 in. Bundle
spacing is 18 in. Find the inductance and capacitance per phase per kilometer of
the line and compare it with that of Example 4.2.

Conductor radius is r = % = 0.4885 in, and from Example 4.2 GMD =
44.097 ft. The equivalent geometric mean radius with two conductors per bundle,
for calculating inductance and capacitance, are given by (4.51) and (4.88)

vd x D, _ V18 x 0.3924 — 022147 ft

MRy =
GMRx 12 12
and
vdxr /18 x 0.4885
M = = = u. ft
GMR, 12 5 0.2471
From (4.58) the inductance per phase is
44,097 '
and from (4.92) the capacitance per phase is
0.0556
0.2471

Comparing with the results of Example 4.2, there is a 23.3 percent reduction in the
inductance and a 28.9 percent increase in the capacitance.

The function [GMD, GMRL, GMRC] = gmd is developed for the computa-
tion of GM D, GMRy,, and GMR for single-circuit, double-circuit vertical, and
horizontal transposed lines with up to four bundled conductors. A menu is dis-
played for the selection of any of the above three circuits. The user is prompted
to input the phase spacing, number of bundled conductors and their spacing, con-
ductor diameter, and the GMR of the individual conductor. The specifications for
some common AC'S R conductors are contained in a file named acsr.m. The com-
mand acsr will display the characteristics of AC'S R conductors. Also, the function
[L, C] = gmd2lc in addition to the geometric mean values returns the inductance
in mH per km and the capacitance in pF per km.

Example 4.4

A 735-kV three-phase transposed line is composed of four AC'SR, 954, 000-cmil,
45/7 Rail conductors per phase with horizontal conductor configuration as shown
in Figure 4.21. Bundle spacing is 46 cm. Use acsr in MATLAB to obtain the con-
ductor size and the electrical characteristics for the Rail conductor. Find the induc-
tance and capacitance per phase per kilometer of the line. :
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a b c
oXe) OO0 . ON®)
0,0 0,0 0,0

+18"=~ | |

[‘—Dlz = 44.5’ D23 = 44.5"—>|

: D13 = 89" '

FIGURE 4.21

Conductor layout for Example 4.4.

The command acsr displays the conductor code name and the area in cmils for the
ACSR conductors. The user is then prompted to enter the conductor code name
within single quotes.

Enter ACSR code name within single quotes -> ’rail’

Al Area Strand Diameter GMR Resistance Ohm/km Ampacity
cmil  Al/St cm cm  60Hz 25C 60Hz 50C Ampere
954000  45/7 2.959 1.173 0.0624 0.0683 1000

The following commands

[GMD, GMRL, GMRC] = gmd;
L=0.2*1og(GMD/GMRL) % mH/km Eq. (4.58)
C = 0.0556/1og(GMD/GMRC) % micro F/km Eq. (4.92)

result in

Number of three-phase circuits Enter
Single-circuit

Double-circuit vertical configuration
Double-circuit horizontal configuration
To quit

O WN =

Select number of menu — 1

Enter spacing unit within quotes ’'m’ or ’ft’ — ’ft’ 2
Enter row vector [D12, D23, D13] = [44.5 44.5 89] B
Cond. size, bundle spacing unit: ’cm’ or ’in’ — ’cm’ i
Conductor diameter in cm = 2.959

Geometric Mean Radius in cm = 1.173

No. of bundled cond. (enter 1 for single cond.) = 4
Bundle spacing in cm = 46

GMD = 56.06649 ft o
GMRL = 0.65767 ft GMRC = 0.69696 ft

L = 0.8891

C = 0.0127
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Example 4.5

A 345-kV double-circuit three-phase transposed line is composed of two ACSR,
1,431, 000-cmil, 45/7 Bobolink conductors per phase with vertical conductor con-
figuration as shown in Figure 4.22. The conductors have a diameter of 1.427 in and
a GMR of 0.564 in. The bundle spacing in 18 in. Find the inductance and capaci-
tance per phase per kilometer of the line. The following commands

a c’

OIGSH =11m-6-0

Hypy=Tm
b Oé]—Lsm = 16.5 m—a-0 }/
Hoz3 =6.5m
ol-ef S33 =125 m —6-0
c . a
FIGURE 4.22

Conductor layout for Example 4.5.

[GMD, GMRL, GMRC] = gmd; '
L=0.2*1og(GMD/GMRL) % mH/km Eq. (4.58)
C = 0.0556/1og(GMD/GMRC) % micro F/km Eq. (4.92)

result in
Number of three-phase circuits Enter
Single-circuit 1
Double-circuit vertical configuration 2
Double-circuit horizontal configuration 3
To quit 0

Select number of menu — 2
Circuit Arrangements

(1) abc-c’b’a’

(2) abc-a’b’c’

Enter (1 or 2) — 1 _

Enter spacing unit within quotes ’m’ or ’ft’ — ’m’
Enter row vector [S11, 822, 833] = (11 16.5 12.5]
Enter row vector [H12, H23] = [7 6.5]

Cond. size, bundle spacing unit: ’cm’ or ’in’ — ’in’
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Conductor diameter in inch = 1.427

Geometric Mean Radius in inch = 0.564

No. of bundled cond. (enter 1 for single cond.) = 2
Bundle spacing in inch = 18

GMD = 11.21362 m

GMRL = 1.18731 m GMRC = 1.25920 m

L = 0.4491
C = 0.0264
Example 4.6

A 345-kV double-circuit three-phase transposed line is composed of one ACSR,
556, 500-cmil, 26,/7 Dove conductor per phase with horizontal conductor confi gu-
ration as shown in Figure 4.23. The conductors have a diameter of 0.927 in and a
GMR of 0.3768 in. Bundle spacing is 18 in. Find the inductance and capacitance
per phase per kilometer of the line. The following commands

a b c a b c
(- 8m - 8m & S1=9m-E— 8§m — 8m —¢&)

FIGURE 4.23
Conductor layout for Example 4.6.

[GMD, GMRL, GMRC] = gmd;
L=0.2%1og (GMD/GMRL) % wH/kn Eq. (4.58)
C = 0.0556/1og(GMD/GMRC) % micro F/km Eq. (4.92)

result in

Number of three-phase circuits Enter
Single-circuit

Double-circuit vertical configuration
Double-circuit horizontal configuration
To quit

O WN =

Select number of menu — 3
Circuit Arrangements

(1) abc-a’b’c’

(2) abc-c’b’a’

Enter (1 or 2) — 1

Enter spacing unit within quotes ’'m’ or ’ft’ — ’m’
Enter row vector (D12, D23, S13] = [8 8 16]

Enter distance between two circuits, S11 = 9
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Cond. size, bundle spacing unit: ’cm’ or ’in’ — ’in’
Conductor diameter in jinch = 0,927

Geometric Mean Radius in inch = 0.3768

No. of bundled cond. (enter 1 for single cond.) =1
GMD = 14.92093 m

GMRL = 0.48915 m GMRC = 0.54251i m

L = 0.6836

C = 0.0168

4.17 MAGNETIC FIELD INDUCTION

Transmission line magnetic fields affect objects in the proximity of the line. The
magnetic fields, related to the currents in the line, induces voltage in objects that
have a considerable length parallel to the line, such as fences, pipelines, and tele-
phone wires.

The magnetic field is affected by the presence of earth return currents. Car-
son [14] presents an equation for computation of mutual resistance and inductance
which are functions of the earth’s resistivity. For balanced three-phase systems the
total earth return current is zero. Under normal operating conditions, the magnetic
field in proximity to balanced three-phase lines may be calculated considering the
currents in the conductors and neglecting earth currents.

Magnetic fields have been reported to affect blood composition, growth, be-
havior, immune systems, and neural functions. There are general concerns regard-
ing the biological effects of electromagnetic and electrostatic fields on people.
Long-term effects are the subject of several worldwide research efforts.

Example 4.7

A three-phase untransposed transmission line and a telephone line are supported on
the same towers as shown in Figure 4.24. The power line carries a 60-Hz balanced
current of 200 A per phase. The telephone line is located directly below phase
b. Assuming balanced three-phase currents in the power line, find the voltage per
kilometer induced in the telephone line.

From (4.15) the flux linkage between conductors 1 and 2 due to current I, is

D
Mg,y = 0.21,1n 1_5:% mWb/km

Since Dy; = Dyo, Aj2 due to I is zero. The flux linkage between conductors 1 and
2 due to current I is

D
Mar) = 0.2L In -D—:j- mWb/km
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C

a b

(39— 36m —- 36m &)
QD 7
N L7
AR s 7/
Dgy Dy Dey Deg 4m
v 7

AN /
\\1/\,\2//

] (W)
—11.2 ml—

FIGURE 4.24
Conductor layout for Example 4.6.

Total flux linkage between conductors 1 and 2 due to all currents is

D
A2 = 0.21,In D"z +0.2I,1n g°2 mWb/km

al cl

For positive phase sequence, with I, as reference, I, = I,/—240° and we have

D D
Aig = 0.21, (ln 92 4 1/-240° In =22
Dal cl

With [, as reference, the instantaneous flux linkage is
A2(t) = V2 | A12f cos(wt + a)
Thus, the induced voltage in the telephone line per kilometer length is

_ d)\12(t)
VT T
The rms voltage induced in the telephone line per kilometer is

V = w|A2]Za 4+ 90° = jwlis

From the circuits geometry

) mHan

= V2w| 12| cos(wt + a + 90°)

Dy = Dyg=(32+4)2=5m
Dy = Dy=(422+4%)3=58 m
The total flux linkage is

Az = 02x 200£0° In ? +0.2 x 200£-240° In %

= 10.283/ — 30° mWb/km
The voltage induced in the telephone line per kilometer is
V = jwAjp = j27r60(10.283/~30°)(107%) = 3.88/60° V/km
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4.18 ELECTROSTATIC INDUCTION

Transmission line electric fields affect objects in the proximity of the line. The
electric field produced by high voltage lines induces current in objects which are
in the area of the electric fields. The effects of electric fields becomes of increasing
concern at higher voltages. Electric fields, related to the voltage of the line, are the
primary cause of induction to vehicles, buildings, and objects of comparable size.
The human body is affected with exposure to electric discharges from charged
objects in the field of the line. These may be steady current or spark discharges.
The current densities in humans induced by electric fields of transmission lines are
known to be much higher than those induced by magnetic fields.

The resultant electric field in proximity to a transmission line can be obtained
by representing the earth effect by image charges located below the conductors at
a depth equal to the conductor height.

4.19 CORONA

When the surface potential gradient of a conductor exceeds the dielectric strength
of the surrounding air, ionization occurs in the area close to the conductor surface.
This partial ionization is known as corona. The dielectric strength of air during fair
weather and at NTP (25°C and 76 cm of Hg) is about 30 kV/cm.

Corona produces power loss, audible hissing sound in the vicinity of the line,
ozone and radio and television interference. The audible noise is an environmental
concern and occurs in foul weather. Radio interference occurs in the AM band.
Rain and snow may produce moderate TVI in a low signal area. Corona is a func-
tion of conductor diameter, line configuration, type of conductor, and condition of
its surface. Atmospheric conditions such as air density, humidity, and wind influ-
ence the generation of corona. Corona losses in rain or snow are many times the
losses during fair weather. On a conductor surface, an irregularity such as a con-
taminating particle causes a voltage gradient that may become the point source of
a discharge. Also, insulators are contaminated by dust or chemical deposits which
will lower the disruptive voltage and increase the corona loss. The insulators are
cleaned periodically to reduce the extent of the problem. Corona can be reduced by
increasing the conductor size and the use of conductor bundling.

The power loss associated with corona can be represented by shunt conduc-
tance. However, under normal operating conditions g, which represents the resis-
tive leakage between a phase and ground, has negligible effect on performance and
is customarily neglected. (i.e., g = 0). -
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PROBLEMS

4.1. A solid cylindrical aluminum conductor 25 km long has an area of 336,400
circular mils. Obtain the conductor resistance at (a) 20°C and (b) 50°C. The
resistivity of aluminum at 20°C is 2.8 x 10=8 Q-m.

4.2. A transmission-line cable consists of 12 identical strands of aluminum, each
3 mm in diameter. The resistivity of aluminum strand at 20°C is 2.8 x
1078 ©-m. Find the 50°C ac resistance per km of the cable. Assume a skin-
effect correction factor of 1.02 at 60 Hz.

4.3. A three-phase transmission line is designed to deliver 190.5 MVA at 220 kV
over a distance of 63 km. The total transmission line loss is not to exceed
2.5 percent of the rated line MVA. If the resistivity of the conductor material
is 2.84 x 107® Q-m, determine the required conductor diameter and the
conductor size in circular mils.

4.4. A single-phase transmission line 35 km long consists of two solid round con-
ductors, each having a diameter of 0.9 cm. The conductor spacing is 2.5 m.
Calculate the equivalent diameter of a fictitious hollow, thin-walled conduc-
tor having the same equivalent inductance as the original line. What is the
value of the inductance per conductor?

4.5. Find the geometric mean radius of a conductor in terms of the radius r of an
individual strand for

(a) Three equal strands as shown in Figure 4.25(a)
(b) Four equal strands as shown in Figure 4.25(b)

€2
(a) (b)

FIGURE 4.25
Cross section of the stranded conductor for Problem 4.5.

4.6. One circuit of a single-phase transmission line is composed of three solid 0.5-
cm radius wires. The return circuit is composed of two solid 2.5-cm radius
wires. The arrangement of conductors is as shown in Figure 4.26. Applying
the concept of the GMD and G MR, find the inductance of the complete line
in millihenry per kilometer.
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G5 m——5 m—E—— 10 m———B—5 m—E)
. - _ —————

Conductor z Conductor y
FIGURE 4.26

Conductor layout for Problem 4.6.

4.7. A three-phase, 60-Hz transposed transmission line has a flat horizontal con-
figuration as shown in Figure 4.27. The line reactance is 0.486 €} per kilo-
meter. The conductor geometric mean radius is 2.0 cm. Determine the phase
spacing D in meters.

a b c
G— p —©— D —©

2D

FIGURE 4.27
Conductor layout for Problem 4.7.

4.8. A three-phase transposed line is composed of one ACSR 159,000-cmil, 54/19
Lapwing conductor per phase with flat horizontal spacing of 8 m as shown
in Figure 4.28. The GMR of each conductor is 1.515 cm.

(a) Determine the inductance per phase per kilometer of the line.

(b) This line is to be replaced by a two-conductor bundle with 8 m spacing
measured from the center of the bundles as shown in Figure 4.29. The spac-
ing between the conductors in the bundle is 40 cm. If the line inductance per
phase is to be 77 percent of the inductance in part (a), what would be the
GM R of each new conductor in the bundle?

a b. c
@—D12=8m—@—D23=8m——@

D13 =16m—————

FIGURE 4.28
Conductor layout for Problem 4.8 (a).
a b c
0,0 0,0 0,0
+ 40« i {
[‘—D12=8m D23=8m———>|
I .
Dj3=16m —!
FIGURE 4.29

Conductor layout for Problem 4.8 (b).
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4.9. A three-phase transposed line is composed of one ACSR, 1,431,000-cmil,
47/7 Bobolink conductor per phase with flat horizontal spacing of 11 m as
shown in Figure 4.30. The conductors have a diameter of 3.625 cm and a
GMR of 1.439 cm. The line is to be replaced by a three-conductor bun-
dle of ACSR, 477,000-cmil, 26/7 Hawk conductors having the same cross-
sectional area of aluminum as the single-conductor line. The conductors have
a diameter of 2.1793 cm and a GMR of 0.8839 cm. The new line will also
have a flat horizontal configuration, but it is to be operated at a higher volt-
age and therefore the phase spacing is increased to 14 m as measured from
the center of the bundles as shown in Figure 4.31. The spacing between the
conductors in the bundle is 45 cm. Determine

(a) The percentage change in the inductance.
(b) The percentage change in the capacitance.

a b c
@—Dlgzllm—-@—D%:llm—@

D13 =22 m

FIGURE 4.30
Conductor layout for Problem 4.9 (a).

a b : c

O O O
0,0 0,0 0,0
- 45 - [ I

p——D12=14m—>'<——D23=14m—>|

I H

Le- D13=28m !
FIGURE 4.31

Conductor layout for Problem 4.9 (b).

4.10. A single-circuit three-phase transposed transmission line is composed of four
ACSR, 1,272,000-cmil conductor per phase with horizontal configuration as
shown in Figure 4.32. The bundle spacing is 45 cm. The conductor code
name is pheasant. In MATLAB, use command acsr to find the conductor di-
ameter and its GM R. Determine the inductance and capacitance per phase
per kilometer of the line. Use function [GMD, GMRL, GMRC] =gmd,
(4.58) and (4.92) in MATLAB to verify your results.
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a b c
O O (OO OO0
00 0,0 0,0
+ 45 + f !

I‘—D12 =14 m D23 =14m—~

| I
. D13=28m !

FIGURE 4.32
Conductor layout for Problem 4.10.

4.11. A double circuit three-phase transposed line is composed of two ACSR,
2,16,7000-cmil, 72/7 Kiwi conductor per phase with vertical configuration
as shown in Figure 4.33. The conductors have a diameter of 4.4069 cm and a
G MR of 1.7374 cm. The bundle spacing is 45 cm. The circuit arrangement
is aybyc1, coboas. Find the inductance and capacitance per phase per kilo-
meter of the line. Find these values when the circuit arrangement is a1 b;¢y,
azbacs. Use function [GMD, GMRL, GMRC] =gmd, (4.58) and (4.92) in
MATLARB to verify your results.

al C2
O Salaz =16m -© O

H12=10m
bl O{\J Sblb2:24m —GO b2
H23=9m

OW¥— See, =1Tm —&0O

C1 : az
.

FIGURE 4.33
Conductor layout for Problem 4.11.

4.12. The conductors of a double-circuit three-phase transmission line are placed
on the corner of a hexagon as shown in Figure 4.34. The two circuits are
in parallel and are sharing the balanced load equally. The conductors of the
circuits are identical, each having a radius r. Assume that the line is sym-
metrically transposed. Using the method of GMD, determine an expression
for the capacitance per phase per meter of the line.
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al C9
P
D D
b 2D bo
D D
\®—D~@/
C1 as
FIGURE 4.34

Conductor layout for Problem 4.12.

4.13. A 60-Hz, single-phase power line and a telephone line are parallel to each
other as shown in Figure 4.35. The telephone line is symmetrically posi-
tioned directly below phase b. The power line carries an rms current of 226
A. Assume zero current flows in the ungrounded telephone wires. Find the
magnitude of the voltage per km induced in the telephone line.

c d
G—2m—©

FIGURE 4.35
Conductor layout for Problem 4.13.

4.14. A three-phase, 60-Hz untransposed transmission line runs in parallel with
a telephone line for 20 km. The power line carries a balanced three-phase
rms current of [, = 320/0° A, I, = 320/—120° A, and I, = 320/—240°
A. The line configuration is as shown in Figure 4.36. Assume zero current
flows in the ungrounded telephone wires. Find the magnitude of the voltage
induced in the telephone line.

4.15. Since earth is an equipotential plane, the electric flux lines are forced to cut
the surface of the earth orthogonally. The earth effect can be represented by
placing an oppositely charged conductor a depth H below the surface of the
earth as shown in Figure 4.37(a). This configuration without the presence
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FIGURE 4.36
Conductor layout for Problem 4.14.

of the earth will produce the same field as a single charge and the earth sur-
face. This imaginary conductor is called the image conductor. Figure 4.37(b)
shows a single-phase line with its image conductors. Find the potential dif-
ference V;, and show that the equivalent capacitance to neutral is given by

2me
Can = Con = —Damy
. n(? Hiz
q 9a b= —qa
D—&)
TN
AN
// II ! ! \ \\ \\
’ 1 H Vo AY
2N R B U T
[ R
o
B --2lF - Hip ===
] 1 ] 1 ' i i
1} 1 ] 1 1 ! !
\\ \ ] 1 ] / /,
\ \ \\_;H'I i ,
NN
\\\‘\'II/’// @
—q —qa —Qp
(a) Earth plane replaced (b) Single-phase line and its image

by image conductor

FIGURE 4.37
Conductor layout for Problem 4.15.
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R

LINE MODEL
AND PERFORMANCE

5.1 INTRODUCTION

In Chapter 4 the per-phase parameters of transmission lines were obtained. This
chapter deals with the representation and performance of transmission lines under
normal operating conditions. Transmission lines are represented by an equivalent
model with appropriate circuit parameters on a “per-phase” basis. The terminal
voltages are expressed from one line to neutral, the current for one phase and, thus,
the three-phase system is reduced to an equivalent single-phase system.

The model used to calculate voltages, currents, and power flows depends on
the length of the line. In this chapter the circuit parameters and voltage and current
relations are first developed for “short” and “medium” lines. Problems relating to
the regulation and losses of lines and their operation under conditions of fixed
terminal voltages are then considered.

Next, long line theory is presented and expressions for voltage and current
along the distributed line model are obtained. Propagation constant and character-
istic impedance are defined, and it is demonstrated that the electrical power is being
transmitted over the lines at approximately the speed of light. Since the terminal
conditions at the two ends of the line are of primary importance, an equivalent
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a model is developed for the long lines. Several MATLAB functions are developed
for calculation of line parameters and performance. Finally, line compensations are
discussed for improving the line performance for unloaded and loaded transmission
lines.

5.2 SHORT LINE MODEL

Capacitance may often be ignored without much error if the lines are less than
about 80 km (50 miles) long, or if the voltage is not over 69 kV. The short line
model is obtained by multiplying the series impedance per unit length by the line
length.

Z = (r+jwL)t
=R+jX .1)

where 7 and L are the per-phase resistance and inductance per unit length, respec-
tively, and £ is the line length. The short line model on a per-phase basis is shown
in Figure 5.1. Vg and Ig are the phase voltage and current at the sending end of the
line, and Vg and IR are the phase voltage and current at the receiving end of the
line.

Is Z=R+3jX Ig
+ + |
Vs Ve |Sr
FIGURE 5.1

Short line model.

If a three-phase load with apparent power Sg(34) is connected at the end of
the transmission line, the receiving end current is obtained by

;2(3¢) '
— _1Wse) 2
Ir 3V (5.2)

The phase voltage at the sending end is

Vg =Vr+ ZIg (5.3)
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and since the shunt capacitance is neglected, the sending end and the receiving end
current are equal, i.e.,

Is = Ip (5.4)

The transmission line may be represented by a two-port network as shown in Figure
5.2, and the above equations can be written in terms of the generalized circuit
constants commonly known as the ABC D constants

Is Ir
oO—>— ——>——o0
+ +
Vs ABCD Vr
FIGURE 5.2

Two-port representation of a transmission line.

Vs = AVg + Blg | (5.5)

Is =CVyx+ DIg (5.6)
or in matrix form v 4 B "
s | _ : R

[IS]*[C DHIR] G

According to (5.3) and (5.4), for short line model
A=1 B=Z (C=0 D=1 (5.8)

Voltage regulation of the line may be defined as the percentage change in voltage
at the receiving end of the line (expressed as percent of full-load voltage) in going
from no-load to full-load.

v, — W
Percent VR = VRO~ VRl 100 (5.9)
[Vr(rrl

At no-load Ir = 0 and from (5.5)

y
Vawi) = (5.10)

For a short line, A = 1 and V() = Vs. Voltage regulation is a measure of
line voltage drop and depends on the load power factor. Voltage regulation will be
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Vs VS
Vs I
ZIn ZIgp
A% 2: %1
v Vr I Vr Vr
Ig

(a) Lagging pf load (b) Upf load (c) Leading pf load

FIGURE 5.3

Phasor diagram for short line.

poorer at low lagging power factor loads. With capacitive loads, i.e., leading power
factor loads, regulation may become negative. This is demonstrated by the phasor
diagram of Figure 5.3.

Once the sending end voltage is calculated the sending-end power is obtained
by

SS(3¢) = 3VsIg (5.11)
The total line loss is then given by
S1(36) = Ss(36) ~ SR(se) (5.12)
and the transmission line efficiency is given by
p )
n= gt (5.13)
5(3¢)

where Ppy34) and Pg(34) are the total real power at the receiving end and sending
end of the line, respectively.

Example 5.1

A 220-kV, three-phase transmission line is 40 km long. The resistance per phase
is 0.15 € per km and the inductance per phase is 1.3263 mH per km. The shunt
capacitance is negligible. Use the short line model to find the voltage and power at
the sending end and the voltage regulation and efficiency when the line is supply-
ing a three-phase load of

(a) 381 MVA at 0.8 power factor lagging at 220 kV. |
(b) 381 MVA at 0.8 power factor leading at 220 kV.

(a) The series impedance per phase is

Z = (r + jwL)t = (0.15 + j2m x 60 x 1.3263 x 1073)40 = 6 + j20 Q



146 5. LINE MODEL AND PERFORMANCE

The receiving end voltage per phase is

_220/0°

=127/0° kV
V3

Vr

The apparent power is
Sr(g) = 381 Lcos™10.8 = 381/36.87° = 304.8 + j228.6 MVA
The current per phase is given by

Skae) 381/ — 36.87° x 108
= = = 1000/ - 36.87° A
Ir 3V 3 x 127/0° 000£ -3

From (5.3) the sending end voltage is

Vs = Vg + ZIp = 127£0° + (6 + j20)(1000£ — 36.87°)(10~2)
= 144.33/4.93° kV

The sending end line-to-line voltage magnitude is
[Vs-r)l = V3|Vs| = 250 kV
The sending end power is

Ss(3g) = 3VsIg = 3 x 144.33/4.93 x 1000/36.87° x 10~3
= 322.8 MW + ;j288.6 Mvar
=433/41.8° MVA

Voltage regulation is

Percent VR = -2@“2;—62@ x 100 = 13.6%

Transmission line efficiency is

7= PR(3¢) _ 304.8

L = = 04,
Poop) ~ 3228 x 100 = 94.4%

(b) The current for 381 MVA with 0.8 leading power factor is

Sk@e)  381/36.87° x 103
= - — é . (<
In= gyt g e = 100036.87° A
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The sending end voltage is

Vs = Vg + ZIg = 127/0° + (6 + j20)(1000£36.87°)(107%)
=121.39/9.29° kV

The sending end line-to-line voltage magnitude is
IVs(r—r)| = V3 Vs = 210.26 kV
The sending end power is

Ssag) = 3VsIs = 3 x 121.39/9.29 x 1000£ — 36.87° x 107°
= 322.8 MW — j168.6 Mvar
= 364.18/ — 27.58° MVA

Voltage regulation is

Percent VR = —2—1—0422%—0?—2—@ x 100 = —4.43%

Transmission line efficiency is

_ PR(3¢) _ 304.8
Ps(3¢) 322.8

x 100 = 94.4%

5.3 MEDIUM LINE MODEL

As the length of line increases, the line charging current becomes appreciable and
the shunt capacitance must be considered. Lines above 80 km (50 miles) and below
250 km (150 miles) in length are termed as medium length lines. For medium length
lines, half of the shunt capacitance may be considered to be lumped at each end of
the line. This is referred to as the nominal m model and is shown in Figure 5.4.
Z is the total series impedance of the line given by (5.1), and Y is the total shunt
admittance of the line given by

Y = (g + jwC)e (5.14)

Under normal conditions, the shunt conductance per unit length, which represents
the leakage current over the insulators and due to corona, is negligible and g is
assumed to be zero. C is the line to neutral capacitance per km, and £ is the line
length. The sending end voltage and current for the nominal 7 model are obtained
as follows: '
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Is Z=R+jX IL Ir
o AMAYY e R
+ +

vy y
Vs T3 T Vr
FIGURE 54

Nominal = model for medium length line.

From KCL the current in the series impedance designated by I, is

Y
IL=IR+—2-VR (5.15)

From KVL the sending end voltage is
Vs =Vr+ZI, (5.16)
Substituting fqr Iy, from (5.15), we obtain
Vs = (1+§> Vr+ZIgr (5.17)
The sending end current is
IS=IL+§VS (5.18)

Substituting for I, and Vg
zY zY
IS=Y(1+-—4—) VR+<1+——2—)IR (5.19)

Comparing (5.17) and (5.19) with (5.5) and (5.6), the ABC D constants for the
nominal 7 model are given by

A= (1 + %) B=2Z (5.20)

C=Y(1+—Z£,—) D=(1+%¥~> (5.21)

In general, the ABCD constants are complex and since the m model is a symmet-
rical two-port network, A = D. Furthermore, since we are dealing with a linear
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passive, bilateral two-port network, the determinant of the transmission matrix in
(5.7) is unity, i.e.,

AD-BC=1 (5.22)

Solving (5.7), the receiving end quantities can be expressed in terms of the sending

end quantities by
VRl _| D -B Vs
ml=12% Al 529

Two MATLAB functions are written for computation of the transmission matrix.
Function [ Z, Y, ABCD ] =rlc2abed(r, L, C, g, f, Length) is used when resistance
in ohm, inductance in mH and capacitance in uF per unit length are specified, and
function [Z, Y, ABCD ] = zy2abcd(z, y, Length) is used when series impedance
in ohm and shunt admittance in siemens per unit length are specified. The above
functions provide options for the nominal 7 model and the equivalent = model
discussed in Section 5.4.

Example 5.2

A 345-kV, three-phase transmission line is 130 km long. The resistance per phase
is 0.036 2 per km and the inductance per phase is 0.8 mH per km. The shunt ca-
pacitance is 0.0112 uF per km. The receiving end load is 270 MVA with 0.8 power
factor lagging at 325 kV. Use the medium line model to find the voltage and power
at the sending end and the voltage regulation.

The function [Z, Y, ABCD] = rlc2abed(r, L, C, g, f, Length) is used to obtain the
transmission matrix of the line. The following commands

r=.036; g=0; £f =60,
L = 0.8; % milli-Henry
C =0.0112; % micro-Farad

Length = 130; VR3ph = 325;
VR = VR3ph/sqrt(3) + j*0; % kV (receiving end phase voltage)
[Z, Y, ABCD] = rlc2abcd(r, L, C, g, £, Length);

AR = acos(0.8);

SR = 270%(cos(AR) + j*sin(AR)); % MVA (receiving end power)
IR = conj(SR)/(3*conj(VR)); % kA (receiving end current)
VsIs = ABCD* [VR; IR]; % column vector [Vs; Is]
Vs = VsIs(l);

Vs3ph = sqrt(3)*abs(Vs); % kV(sending end L-L voltage)
Is = VsIs(2); Ism = 1000*abs(Is);% A (sending end current)
pfs= cos(angle(Vs)~- angle(Is)); % (sending end power factor)
Ss = 3xVs*conj(Is); % MVA (sending end power)

REG = (Vs3ph/abs(ABCD(1,1)) - VR3ph)/VR3ph *100;
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fprintf(’ Is = Jg A’, Ism), fprintf(’ pf = %g’, pfs)
fprintf(’ Vs = Yg L-L kV’, Vs3ph)

fprintf(’ Ps = g MW’, real(Ss)),

fprintf(’ Qs = %g Mvar’, imag(Ss))

fprintf(’ Percent voltage Reg. = %g’, REG)

([

It

resulf in

Enter 1 for Medium line or 2 for long line — 1
Nominal 7 model

Z =4.68 + j 39.2071 ohms

Y =0+ j 0.000548899 siemens

ABCD = 0.98924 + j 0.0012844 4.68 + j 39.207
~ | -3.5251e-07 + j 0.00054595 0.98924 + j 0.0012844

Is = 421.132 A pf = 0.869657

Vs = 345.002 L-L kV

Ps = 218.851 MW Qs = 124.23 Mvar
Percent voltage Reg. = 7.30913

Example 53

A 345-kV, three-phase transmission line is 130 km long. The series impedance is
z = 0.036+50.3 £ per phase per km, and the shunt admittance is y = j4.22x 10~
siemens per phase per km. The sending end voltage is 345 kV, and the sending end
current is 400 A at 0.95 power factor lagging. Use the medium line model to find
the voltage, current and power at the receiving end and the voltage regulation.

The function [Z, Y, ABCD] = zy2abcd(z, y, Length) is used to obtain the trans-
mission matrix of the line. The following commands

z = .036 + j* 0.3; y = j*4.22/1000000; Length = 130;
Vs3ph = 345; 1Ism = 0.4; Y%kA;

As = -acos(0.95);

Vs = Vs3ph/sqrt(3) + j*0; % kV (sending end phase voltage)
Is = Ism*(cos(As) + j*sin(As));

[Z,Y, ABCD] = zy2abcd(z, y, Length);

VrIr = inv(ABCD)* [Vs; Is]; % column vector [Vr; Ir]
Vr = Vrir(1);

Vr3ph = sqrt(3)*abs(Vr); % kV(receiving end L-L voltage)

Ir = VrIr(2); Irm = 1000*%abs(Ir); % A (receiving end current)
pfr= cos(angle(Vr)- angle(Ir)); Y(receiving end power factor)
Sr = 3*Vrxconj(Ir); % MVA (receiving end power)
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REG = (Vs3ph/abs(ABCD(1,1)) - Vr3ph)/Vr3ph *100;
fprintf(’ Ir = g A’, Irm), fprintf(’ pf = %g’, pfr)
fprintf(’ Vr = %g L-L kV’, Vr3ph)

fprintf(’ Pr = Jg MW’, real(Sr))

fprintf(’ Qr = Y%g Mvar’, imag(Sr))

fprintf (’ Percent voltage Reg. = %g’, REG)

result in

Enter 1 for Medium line or 2 for long line — 1
Nominal 7 model
Z =4.68 + j 39 ohms

no

Y =0+ j 0.0005486 siemens
ABCD — 0.9893 + j 0.0012837 4.68 + j 39
~ | -3.5213e-07 + j 0.00054565 0.9893 + j 0.0012837
Ir = 441.832 A pf = 0.88750
Vr = 330.68 L-L kV :
Pr = 224.592 MW Qr 116.612 Mvar

Percent voltage Reg. = 5.45863

54 LONG LINE MODEL

For the short and medium length lines reasonably accurate models were obtained
by assuming the line parameters to be lumped. For lines 250 km (150 miles) and
longer and for a more accurate solution the exact effect of the distributed param-
eters must be considered. In this section expressions for voltage and current at
any point on the line are derived. Then, based on these equations an equivalent 7
model is obtained for the long line. Figure 5.5 shows one phase of a distributed line
of length £ km. _

The series impedance per unit length is shown by the lowercase letter z, and
the shunt admittance per phase is shown by the lowercase letter y, where z =
7+ jwL and y = g + jwC. Consider a small segment of line Az at a distance z
from the receiving end of the line. The phasor voltages and currents on both sides
of this segment are shown as a function of distance. From Kirchhoff’s voltage law

V(z+ Az) = V(z) + z Az I(x) (5.29)
or

V(z+ Az) — V(x)
Az

=zI(z) (5.25)
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I I A z A I I
Is Iz +Azx) AT~ (z) o R
+ + 1+ +
Vs Viz+ Az)——y Az yAzx = V(z) Vr
| Az % z
| 14
FIGURE 5.5

Long line with distributed parameters.

Taking the limit as Az — 0, we have

av(z)
? =2z I(il))

Also, from Kirchhoff’s current law

I(z+ Az) = I(z) + y Az V(z + Ax)

or
Iz + Az)~I(z)
Ay =g V(z + Ax)
Taking the limit as Az — 0, we have
dl(z) _
i vV

Differentiating (5.26) and substituting from (5.29), we get

d2V (z) , dI(z)

dz? dx
= 2yV(x)

Let
7 =2y
The following second-order differential equation will result.

d*V (z)

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)

(5.31)

(5.32)
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The solution of the above equation is
V(z) = A1’ + Age™ ™ (5.33)

where -y, known as the propagation constant, is a complex expression given by
(5.31)or

y=a+jf =z =/(r +jwL)(g+ juC) (534)

The real part o is known as the attenuation constant, and the imaginary component
(3 is known as the phase constant. (3 is measured in radian per unit length.
From (5.26), the current is

I(z) = %%S’) = L1077 — Age™™)
- \/g(Ale'” — Age) (5.35)
or
I(z) = Zic(Ale"x — Age™ %) (5.36)

where Z, is known as the characteristic impedance, given by

Z, = \/? (5.37)
y

To find the constants A; and A; we note that when z = 0, V(z) = Vg, and
I(z) = Ig. From (5.33) and (5.36) these constants are found to be

4, Vot Zeln
2
Ay = ZB_‘_‘?@ (5.38)

Upon substitution in (5.33) and (5.36), the general expressions for voltage and
current along a long transmission line become

_ Vg + Z.CIRe'Ym " Vg — ZCIRe—’Yx

V(z) 5 5

(5.39)
Yo 4 Ip Yo _Ip

I(z) = Ze 5 e — L 5 e " (5.40)
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The equations for voltage and currents can be rearranged as follows:

YT -z YT _ ,—YX
V(z) = e——%—VR e (5.41)
1 e —e® e’ +e "
Iz) =m >-—— e — 5.42
() Z. 5 Vr + 5 R (5.42)

Recognizing the hyperbolic functions sinh, and cosh, the above equations are writ-
ten as follows:

V(z) = coshyz Vg + Z,sinhyz I (5.43)
I{z) = Zi sinhyz Vg + coshyz Ip (5.44)
c

We are particularly interested in the relation between the sending end and the re-
ceiving end of the line. Setting x = ¢, V({) = V; and I(£) = I, the result is

Vs = coshvl Vg + Z.sinhy£ Ip (5.45)
1
I, = A sinhv¢ Vg + cosh £ Ip (5.46)
c
Rewriting the above equations in terms of the ABC D constants as before, we have
Vs1] [A B Vr

sl=le sl e

where
A = cosh £ B = Z,sinh+¢ (5.48)
C= Zi sinhy?f D = coshy{ (5.49)

c

Note that, as before, A = D and AD — BC = 1.

Itis now possible to find an accurate equivalent 7 model, shown in Figure 5.6,
to replace the ABC'D constants of the two-port network. Similar to the expressions
(5.17) and (5.19) obtained for the nominal ., for the equivalent 7 model we have

Nt

z
Vs = (1 + 5 ) Vr+ Z'Ix (5.50)

Z/YI (AVd)
IS=Y'<1+ i )VR+(1+Z2Y)IR (5.51)

Comparing (5.50) and (5.51) with (5.45) and (5.46), respectively, and making use
of the identity

tanh e _ coshyf — 1

2 sinh v£ (5.52)
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the parameters of the equivalent w model are obtained.

- Z' = Z,sinhyl =Z sm’)llle'yf (5.53)
Y 1 v£ Y tanh~£/2
—— — SRSl A g 5.54
5 =7 tanh 5 =3 12 (5.54)

Ig Ir
e AAMAT I R
+ +

L.y’ _ Yy tanhv£/2 y' L
Vs TFETTzwpe T VR
o— o
FIGURE 5.6

Equivalent 7 model for long length line.

The functions [Z, Y, ABCD ] = rlc2abed(r, L, C, g, f, Length) and [Z, Y,
ABCD ] = zy2abcd(z, y, Length) with option 2 can be used for the evaluation of
the transmission matrix and the equivalent 7 parameters. However, Example 5.4
shows how these hyperbolic functions can be evaluated easily with simple MAT-
LAB commands.

Example 5.4

A 500-kV, three-phase transmission line is 250 km long. The series impedance is
z = 0.045 + 50.4 €2 per phase per km and the shunt admittance is y = j4 x 1075
siemens per phase per km. Evaluate the equivalent 7 model and the transmission
matrix

The following commands

z = 0.045 + j*.4; y = j*4.0/1000000; Length = 250;
gamma = sqrt(z*y); Zc = sqrt(z/y);

A = cosh(gamma*Length); B = Zc*sinh(gamma*Length);
C = 1/Zc * sinh(gamma*Length); D = A;

ABCD = [A B; C D]

Z =B; Y= 2/Zc * tanh(gamma*Length/2)

result in
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ABCD =
0.9504 + 0.00551 10.8778 +98.3624i
-0.0000 + 0.0010i 0.9504 + 0.0055i
10.8778 +98.36241i

0.0000 + 0.0010i

5.5 VOLTAGE AND CURRENT WAVES

The rms expression for the phasor value of voltage at any point along the line is
given by (5.33). Substituting o + ;3 for ~, the phasor voltage is

V(z) = A1e%%eIP? 4 Ao —iB

Transforming from phasor domain to time domain, the instantaneous voltage as a
function of ¢ and x becomes

v(t, @) = V2R A2l W) 4 (IR ApemoreIWEPT)  (555)

As z increases (moving away from the receiving end), the first term becomes larger
because of e* and is called the incident wave. The second term becomes smaller
because of e™* and is called the reflected wave. At any point along the line, volt-
age is the sum of these two components.

v(t,x) = vi(t, z) + va(t, z) (5.56)

where
v1(t, %) = V2 A1 cos(wt + B) 5.57
va(t, ) = V2 Age™%® cos(wt — Bzx) (5.58)

As the current expression is similar to the voltage, the current can also be consid-
ered as the sum of incident and reflected current waves.

- Equations (5.57 ) and (5.58 ) behave like traveling waves as we move along
the line. This is similar to the disturbance in the water at some sending point. To see
this, consider the reflected wave v,(¢, z) and imagine that we ride along with the
wave. To observe the instantaneous value, for example the peak amplitude requires
that

w 2K~
wt—pPr=2Kr or z=—t———
B B
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Thus, to keep up with the wave and observe the peak amplitude we must travel
with the speed

dr w
—_— = 5.59
& B (3.59)
Thus, the velocity of propagation is given by
w 2nf
V== (5.60)
BB

The wavelength A or distance x on the wave which results in a phase shift of 27
radian is

B =2m
or
2w
A= — 5.61
7 (5.61)

When line losses are neglected, i.e., when g = 0 and r = 0, the real part of the
propagation constant o = 0, and from (5.34) the phase constant becomes

B =wVLC (5.62)

Also, the characteristic impedance is purely resistive and (5.37) becomes

L
Z = — ° 5.63
c G (5.63)
which is commonly referred to as the surge impedance. Substituting for 3 in (5.60) ‘
and (5.61), for a lossless line the velocity of propagation and the wavelength be-
come

1
1
A= IN47s, (5.65)

The expressions for the inductance per unit length L and capacitance per unit length
C of a transmission line were derived in Chapter 4, given by (4.58) and (4.91).
When the internal flux linkage of a conductor is neglected GMR;, = GMR¢, and
upon substitution (5.64) and (5.65) become

1
Hogo

v

(5.66)

-3

A

s 5.67)
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Substituting for g = 47 x 10~7 and g¢ = 8.85 x 10712, the velocity of the wave
is obtained to be approximately 3 x 10% m/sec, i.e., the velocity of light. At 60 Hz,
the wavelength is 5000 km. Similarly, substituting for L and C in (5.63), we have

1 G5 . GMD
Z. o~ — [HO
=2V e GMR,
GMD
~ 601 5.68
00l TR (5.68)

For typical transmission lines the surge impedance varies from approximately 400}
for 69-kV lines down to around 250 2 for double-circuit 765-kV transmission lines.

For alossless line ¥ = j/3 and the hyperbolic functions cosh Y& = cosh j 8z =
cos Bz and sinh yz = sinh j8z = j sin Bz, the equations for the rms voltage and
current along the line, given by (5.43) and (5.44), become

V(z) = cos Bz Vg + jZ.sin Bz I (5.69)
1
I(z) = j7 sin Bz Vg + cos Bz Ip (5.70)
[+

At the sending end z = ¢
Vs =cosfl Vg + jZ.sin Bl 1R (57D
1
Ig = j7 sin 3¢ Vg + cos B¢ I (5.72)
[

For hand calculation it is easier to use (5.71) and (5.72), and for more accurate
calculations (5.47) through (5.49) can be used in MATLAB. The terminal conditions
are readily obtained from the above equations. For example, for the open-circuited
line Ir = 0, and from (5.71) the no-load receiving end voltage is

Vs
cos (3¢

At no-load, the line current is entirely due to the line charging capacitive current
and the receiving end voltage is higher than the sending end voltage. This is evident
from (5.73), which shows that as the line length increases (¢ increases and cos 1
decreases, resulting in a higher no-load receiving end voltage.

For a solid short circuit at the receiving end, Vg = 0 and (5.71) and (5.72)
reduce to

VR = (5.73)

Vs =jZ.sinBl I (5.74)
Is =cosfBlIg (5.75)

The above equations can be used to find the short circuit currents at both ends of
the line.
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5.6 SURGE IMPEDANCE LOADING

When the line is loaded by being terminated with an impedance equal to its char-
acteristic impedance, the receiving end current is '

~Vr

Ir Z.

(5.76)

For a lossless line Z, is purely resistive. The load corresponding to the surge
impedance at rated voltage is known as the surge impedance loading (S1L), given

by

3 2
SIL = 3VgIh = 'ZR' (5.77)
[

Since Vi = Viratea/ V'3, SIL in MW becomes

(kVLrated)2

IL =
S 7.

MW (5.78)

Substituting for I'p in (5.69) and V3 in (5.70) will result in

V(z) = (cos Bz + jsin Bz)Vr or V(z) = VrlBz (5.79)
I(z) = (cos Bz + jsin fz)Ig or I(x)=Irl{Px (5.80)

Equations (5.79) and (5.80) show that in a lossless line under surge impedance
loading the voltage and current at any point along the line are constant in magnitude
and are equal to their sending end values. Since Z. has no reactive component,
there is no reactive power in the line, Qs = @Qgr = 0. This indicates that for
SIL, the reactive losses in the line inductance are exactly offset by reactive power
supplied by the shunt capacitance or wL|Ig|? = wC|Vg|?. From this relation, we
find that Z, = Vg/Ir = /L/C, which verifies the result in (5.63). SIL for
typical transmission lines varies from approximately 150 MW for 230-kV lines to
about 2000 MW for 765-kV lines. SIL is a useful measure of transmission line
capacity as it indicates a loading where the line’s reactive requirements are small.
For loads significantly above SIL, shunt capacitors may be needed to minimize
voltage drop along the line, while for light loads significantly below SIL , shunt
inductors may be needed. Generally the transmission line full-load is much higher
than SIL. The voltage profile for various loading conditions is illustrated in Figure
5.11 (page 182) in Example 5.9(h).



160 5. LINE MODEL AND PERFORMANCE

Example 5.5

A three-phase, 60-Hz, 500-kV transmission line is 300 km long. The line induc-
tance is 0.97 mH/km per phase and its capacitance is 0.0115 pF/km per phase.
Assume a lossless line.

(2) Determine the line phase constant 3, the surge impedance Z, velocity of prop-
agation v and the line wavelength ).

(b) The receiving end rated load is 800 MW, 0.8 power factor lagging at 500 kV.
- Determine the sending end quantities and the voltage regulation.

(a) For a lossless line, from (5.62) we have

B=wVLC = 2w x 60v/0.97 x 0.0115 x 10~ = 0.001259 rad/km
and from (5.63)

L 0.97 x 10-3
Z=\&=\ooims x 10 ~ 2043 @

Velocity of propagation is
. 1 1
VLC  +0.97 x 0.0115 x 10-9
and the line wavelength is

v 1
=—=-—(2.994 x 10%) = 4 k
A 7 60( 994 x 10°) = 4990 km

(b) B¢ = 0.001259 x 300 = 0.3777 rad = 21.641°

= 2.994 x 10° km/s

The receiving end voltage per phase is

_500£0°
V3

The receiving end apparent power is

Vr = 288.675/0° kV

0.8

The receiving end current per phase is given by

Shist) = o Zcos™ 0.8 = 1000/36.87° = 800 + j600 MVA

Shig) 1000/ — 36.87° x 103
= = = 1154.7/ — 36.87° A
Ir=3 Vi 3 x 288.67520° 1154.72 — 36.87
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From (5.71) the sending end voltage is

Vs =cosfBl VR +jZ.sin Bl Ig
= (0.9295)288.675/0° + j(290.43)(0.3688)(1154.7/ — 36.87°)(1073)
= 356.53/16.1° kV

The sending end line-to-line voltage magnitude is
[Vs(r—ry| = V3|Vs| = 617.53 kV

From (5.72) the sending end current is
1 .
Ig = j7 sin B¢ Vg + cos B¢ I
[+

= j59;—45(0.3688)(288.675[0°)(103) + (0.9295)(1154.7/ — 36.87°)
=902.3/ —17.9° A

The sending end power is

Ssag) = 3VsIs =3 x 356.53/16.1 x 902.3/~17.9° x 107
= 800 MW + j539.672 Mvar
= 065.1/34° MVA

Voltage regulation is

356.53/0.9295 — 288.675
288.675

The line performance of the above transmission line including the line re-
sistance is obtained in Example 5.9 using the lineperf program. When a line is
operating at the rated load, the exact solution results in Vg(y_ry = 623.5/15.57°
kV, and I; = 903.1/—17.7° A. This shows that the lossless assumption yields
acceptable results and is suitable for hand calculation.

Percent VR =

x 100 = 32.87%

5.7 COMPLEX POWER FLOW
THROUGH TRANSMISSION LINES

Specific expressions for the complex power flow on a line may be obtained in terms
of the sending end and receiving end voltage magnitudes and phase angles and the
ABCD constants. Consider Figure 5.2 where the terminal relations are given by
(5.5) and (5.6). Expressing the ABC D constants in polar form as A = |A|Z84,
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B = |B|/0p, the sending end voltage as Vs = |Vs|/6, and the receiving end
voltage as reference Vg = |Vg| /0, from (5.5) Ir can be written as

V|46 — |A|L04|VR|LO

I = 1B]/05
_ Vsl _ |AllVR|
/0~ 0p L84~ 0B (5.81)
L 1Bl
The receiving end complex power is
SR(3¢) == PR(3¢) + jQR(3¢) = 3VrIR (5.82)
Substituting for I from (5.81), we have
Vsl Vr] |Al[Vr[®
= - — [0 — 0 5.83
SR(3¢) 33— |Bl 10 ) 3 IBI B A ( )
or in terms of the line-to-line voltages, we have
Vsw-p)IVrL-1)] |A||VR(-1) |2

SR(3¢') = 1B g — 6 — [0 —04 (5.84)

|B|

The real and reactive power at the receiving end of the line are

Vsir—yWVar— AllVrir— 2
Prie) = Vs L?glR(L 1| os(0p—0) — ullﬁgl*mcos(eg—%) (5.85)
\Vs-0)|lVr Ll |AllVri-0y® .
Qreag) = LiBI E=L)] sin(65—6) — %sm(o,g—e,l) (5.86)
The sending end power is
Ss@¢) = Ps(ag) + Qs sy = 3VsI§ (5.87)

From (5.23), Is can be written as

|A|£04|Vs|£6 — |VR|£0
|B|L0p

Is = (5.88)

Substituting for I in (5.87) yields

AllVscp_p 2 Voo VL

Pg(3g) = L”—%Ll—L)—I—COS(HB—HA)— Vs L?JIEI?IR(L ] cos(fp+46) (5.89)
Al|Vsip_p |2 VeV

Qs(3e) = l-”—i%—”l—sin(eg—m)— Vs L;gl"“ 2] sin(0p+6) (5.90)
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The real and reactive transmission line losses are

Pr(3g) = Ps(3¢) — Pr(3e) (5.91)
Qr(39) = @s(36) — QRr(39) (5.92)

The locus of all points obtained by plotting Q) p(34) versus Pg(sg) for fixed
line voltages and varying load angle ¢ is a circle known as the receiving end power
circle diagram. A family of such circles with fixed receiving end voltage and vary-
ing sending end voltage is extremely useful in assessing the performance character-
istics of the transmission line. A function called pwrcirc(ABCD) is developed for
the construction of the receiving end power circle diagram, and its use is demon-
strated in Example 5.9(g). _ o

For a lossless line B = jX', 04 = 0, 6 = 90°, and A = cos 8¢, and the
real power transferred over the line is given by

Veir—mlVeer_
P3¢=l s-p) VR L)lsin5

X7 (5.93)
and the receiving end reactive power is
V-l Vr(z- Vae-nl
QRr3p = Vst L))!(l, Re-p) cosd — M cos B4 (5.94)

XI
For a given system operating at constant voltage, the power transferred is propor-
tional to the sine of the power angle 4. As the load increases, § increases. For
a lossless line, the maximum power that can be transmitted under stable steady-
state condition occurs for an angle of 90°. However, a transmission system with
its connected synchronous machines must also be able to withstand, without loss
of stability, sudden changes in generation, load, and faults. To assure an adequate

margin of stability, the practical operating load angle is usually limited to 35 to
45°. :

5.8 POWER TRANSMISSION CAPABILITY

The power handling ability of a line is limited by the thermal loading limit and
the stability limit. The increase in the conductor temperature, due to the real power
loss, stretches the conductors. This will increase the sag between transmission tow-
ers. At higher temperatures this may result in irreversible stretching. The thermal
limit is specified by the current-carrying capacity of the conductor and is available
in the manufacturer’s data. If the current-carrying capacity is denoted by Iihermals
the thermal loading limit of a line is

Sthermal = 3V¢ratedIthe'rmal (5.95)
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The expression for real power transfer over the line for a lossless line is given
© by (5.93). The theoretical maximum power transfer is when & = 90°. The practical
operating load angle for the line alone is limited to no more than 30 to 45°. This
is because of the generator and transformer reactances which, when added to the
line, will result in a larger § for a given load. For planning and other purposes, it is
very useful to express the power transfer formula in terms of SIL, and construct
the line loadability curve. For a lossless line X’ = Z,sin 8¢, and (5.93) may be

written as
Vsw-n)l\ (Vrw-p)l\ (V2 siné
Py = rated ” 5.96
73¢' ( V;'ated V;'ated Zc sin ﬁé ( )

The first two terms within parenthesis are the per-unit voltages denoted by Vispy and
VRpu, and the third term is recognized as SIL. Equation (5.96) may be written as

_ IVSpu”VRPUISIL si

Ps simpe om0
- leP:ilrll‘(’gﬁis I ins (5.97)
EY

The function loadabil(L, C, f) obtains the loadability curve and thermal limit curve
of the line. The loadability curve as obtained in Figure 5.12 (page 182) for Example
5.9(3i) shows that for short and medium lines the thermal limit dictates the maxi-
mum power transfer. Whereas, for longer lines the limit is set by the practical line
loadability curve. As we see in the next section, for longer lines it may be necessary
to use series capacitors in order to increase the power transfer over the line.

Example 5.6

A three-phase power of 700-MW is to be transmitted to a substation located 315
km from the source of power. For a preliminary line design assume the following
parameters: '

Vs = 1.0 per unit, Vg = 0.9 per unit, A = 5000 km, Z, = 320 ©, and
4 = 36.87°

(a) Based on the practical line loadability equation determine a nominal voltage
level for the transmission line. :

(b) For the transmission voltage level obtained in (a) calculate the theoretical max-
imum power that can be transferred by the transmission line.

(a) From (5.61), the line phase constant is

B = 2—;—2 rad

360 360 .
= = 5550 (315) = 22.68
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From the practical line loadability given by (5.97), we have

700 = (1221((()22)6(§’€L) sin(36.87°)
Thus
SIL = 499.83 MW
From (5.78)

RV = \/(2)(SIL) = 1/(320)(499.83) = 400 kV
(b) The equivalent line reactance for a lossless line is given by
X' = Z,sin B¢ = 320sin(22.68) = 123.39 Q

For a lossless line, the maximum power that can be transmitted under steady state
condition occurs for a load angle of 90°. Thus, from (5.93), assuming |VS| = 1.0
pu and |Vg| = 0.9 pu, the theoretical maximum power is

400)(0.9)(400
Psyimaz) = ( )1(23?3; ) (1) = 1167 MW

5.9 LINE COMPENSATION

We have noted that a transmission line loaded to its surge impedance loading has
no net reactive power flow into or out of the line and will have approximately a flat
voltage profile along its length. On long transmission lines, light loads appreciably
less than STL result in a rise of voltage at the receiving end, and heavy loads ap-
preciably greater than S1L will produce a large dip in voltage. The voltage profile
of a long line for various loading conditions is shown in Figure 5.11 (page 182).
Shunt reactors are widely used to reduce high voltages under light load or open line
conditions. If the transmission system is heavily loaded, shunt capacitors, static var
control, and synchronous condensers are used to improve voltage, increase power
transfer, and improve the system stability. '

5.9.1 SHUNT REACTORS

Shunt reactors are applied to compensate for the undesirable voltage effects asso-
ciated with line capacitance. The amount of reactor compensation required on a
transmission line to maintain the receiving end voltage at a specified value can be
obtained as follows.
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Is Long line Iy
+ +
Vs | Vr JXLsh
FIGURE 5.7

Shunt reactor compensation.

Consider a reactor of reactance X, connected at the receiving end of a
long transmission line as shown in Figure 5.7. The receiving end current is

JXLsh

I (5.98)

Substituting I into (5.71) results in

Vs = Vg(cos B¢ + Ze sin 3¢)
XLsh

Note that Vg and Vi are in phase, which is consistent with the fact that no real
power is being transmitted over the line. Solving for X, yields

Xpsh = 77— 7, (5.99)

Xpeh = ———7 (5.100)
To find the relation between Is and Ig, we substitute for Vg from (5.98) into (5.72)
1
Ig = (——7 sin B¢ Xpsn + cosﬂé) Ir
c

Substituting for X, from (5.100) for the case when Vg = Vj results in

Is = —Ig (5.101)

FL@'%:%
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With one reactor only at the receiving end, the voltage profile will not be uniform,
and the maximum rise occurs at the midspan. It is left as an exercise to show that
for Vg = Vp, the voltage at the midspan is given by

Vin = —Viﬁz (5.102)

cos

Also, the current at the midspan is zero. The function openline(ABCD) is used to
find the receiving end voltage of an open. line and to determine the Mvar of the
reactor required to maintain the no-load receiving end voltage at a specified value.
Example 5.9(d) illustrates the reactor compensation. Installing reactors at both ends
of the line will improve the voltage profile and reduce the tension at midspan.

Example 5.7

For the transmission line of Example 5.5:

(a) Calculate the receiving end voltage when line is terminated in an open circuit
and is energized with 500 kV at the sending end.

(b) Determine the reactance and the Mvar of a three-phase shunt reactor to be in-
stalled at the receiving end to keep the no-load receiving end voltage at the rated
value.

(a) The line is energized with 500 kV at the sending end. The sending end voltage
per phase is

500£0°
Vo =
T3
From Example 5.5, Z, = 290.43 and 3¢ = 21.641°.

When the line is open Ir = 0 and from (5.71) the no-load receiving end
voltage is given by

= 288.675 kV

v Vs _ 288675
Rlnl) = Cos pe ~ 0.9295

The no-load receiving end line-to-line voltage is
VR(L-Lyn1) = V3 VR = 537.9 kV
(b) For Vs = Vg, the required inductor reactance given by (5.100) is
sin(21.641°)
1 — cos(21.641°
The three-phase shunt reactor rating is

— (kVLrated)2 — (500)2
Xrsh 1519.5

= 310.57 kV

XLsh = )(290.43) =1519.5 Q

Q34 = 164.53 Mvar
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5.9.2 SHUNT CAPACITOR COMPENSATION

Shunt capacitors are used for lagging power factor circuits created by heavy loads.
The effect is to supply the requisite reactive power to maintain the receiving end
voltage at a satisfactory level. Capacitors are connected either directly to a bus bar
or to the tertiary winding of a main transformer and are disposed along the route to
minimize the losses and voltage drops. Given Vi and Vg, (5.85) and (5.86) can be
used conveniently to compute the required capacitor Mvar at the receiving end for a
specified load. A function called shntcomp(ABCD) is developed for this purpose,
and its use is demonstrated in Example 5.9(f).

5.9.3 SERIES CAPACITOR COMPENSATION

Series capacitors are connected in series with the line, usually located at the mid-
point, and are used to reduce the series reactance between the load and the supply
point. This results in improved transient and steady-state stability, more econom-
ical loading, and minimum voltage dip on load buses. Series capacitors have the
good characteristics that their reactive power production varies concurrently with
the line loading. Studies have shown that the addition of series capacitors on EHV
transmission lines can more than double the transient stability load limit of long
lines at a fraction of the cost of a new transmission line.

Long line
Is y o LR
[
+ . +
“]XCser
Vs Vr :F —JXcsh [:l

FIGURE 5.8
Shunt and serjes capacitor compensation.

With the series capacitor switched on as shown in Figure 5.8, from (5.93), the
power transfer over the line for a lossless line becomes

VooV
P3¢=| se-n)IVae L)Isin5

5.103)
X'~ XCser (

Where X ;e is the series capacitor reactance. The ratio X, cser/ X’ expressed as a
percentage is usually referred to as the percentage compensation. The percentage
compensation is in the range of 25 to 70 percent.
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One major drawback with series capacitor compensation is that special pro-
tective devices are required to protect the capacitors and bypass the high current
produced when a short circuit occurs. Also, inclusion of series capacitors estab-
lishes a resonant circuit that can oscillate at a frequency below the normal syn-
chronous frequency when stimulated by a disturbance. This phenomenon is re-
ferred to as subsynchronous resonance (SSR). If the synchronous frequency minus
the electrical resonant frequency approaches the frequency of one of the turbine-
generator natural torsional modes, considerable damage to the turbine-generator
may result. If L' is the lumped line inductance corrected for the effect of dis-
tribution and Cs,, is the capacitance of the series capacitor, the subsynchronous
resonant frequency is

fo = for| e (5.104)

L,CSCT
where f is the synchronous frequency. The function sercomp(ABCD) can be used
to obtain the line performance for a specified percentage compensation. Finally,
when line is compensated with both series and shunt capacitors, for the specified
terminal voltages, the function srshcomp(ABCD) is used to obtain the line per-
formance and the required shunt capacitor. These compensations are also demon-
strated in Example 5.9(f).

Example 5.8

The transmission line in Example 5.5 supplies a load of 1000 MVA, 0.8 power
factor lagging at 500 kV.

(a) Determine the Mvar and the capacitance of the shunt capacitors to be installed
at the receiving end to keep the receiving end voltage at 500 kV when the line is
energized with 500 kV at the sending end.

{(b) Only series capacitors are installed at the midpoint of the line providing 40 per-
cent compensation. Find the sending end voltage and voltage regulation.

(a) From Example 5.5, Z, = 290.43 and 8¢ = 21.641°. Thus, the equivalent line
reactance for a lossless line is given by

X' = Z, sin 8¢ = 290.435in(21.641°) = 107.11
The receiving end power is
Sr(ag) = 1000£cos™1(0.8) = 800 + j600 MVA
For the above operating condition, the power angle J is obtained from (5.93)

(500)(500)

800 = 10711 ind
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which results in § = 20.044°. Using the approximate relation given by (5.94), the
net reactive power at the receiving end is

_ (500)(500) oy (500)2 o
Qg(g@ BT TATEN c0s(20.044°) 10711 cos(21.641 ) = 23.15 Mvar

Thus, the required capacitor Mvar is S¢ = j23.15 — §600 = —5576.85
The capacitive reactance is given by

Vl*  (500)2 .
Xe St~ j576.85 Y 33.38 02
or
6
10 =6.1 uF

¢= 2 (60)(433.38)

The shunt compensation for the above transmission line including the line
resistance is obtained in Example 5.9(f) using the lineperf program. The exact so-
lution results in 613.8 Mvar for capacitor reactive power as compared to 576.85
Mvar obtained from the approximate formula for the lossless line. This represents
approximately an error of 6 percent.

(b) For 40 percent compensation, the series capacitor reactance per phase is
Xoer = 0.4X' = 0.4(107.1) = 42.84 Q
The new equivalent 7 circuit parameters are given by
Z' = j(X' — Xser) = §(107.1 — 42.84) = j64.26 Q

Y== jZEC tan(34/2) = j29§43 tan(21.641°/2) = j0.001316 siemens

The new B constant is B = j64.26 and the new A constant is given by

zZ'y’ (j64.26)(50.001316)

A=1+—2~—=1+ = 0.9577

2
The receiving end voltage per phase is
500
VR = —= = 288.675 kV
RRYE

and the receiving end current is

I Sk(sg) _ 1000/—36.87°
= 3ve T 3% 28367570

= 1.1547/-36.87° kA
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Thus, the sending end voltage is

Vs = AVr+ BIp = 0.9577 x 288.675 + j64.26 x 1.1547/—36.87°
326.4/10.47° kV

and the line-to-line voltage magnitude is |Vg(—r)| = V3 Vs = 565.4 kV. Voltage
regulation is

565.4/0.958 — 500
500

Percent VR = x 100 = 18%

The exact solution obtained in Example 5.9(f) results in Vg(,_z) = 571.9kV. This
represents an error of 1.0 percent.

5.10 LINE PERFORMANCE PROGRAM

A program called lineperf is developed for the complete analysis and compen-
sation of a transmission line. The command lineperf displays a menu with five
options for the computation of the parameters of the m models and the transmis-
sion constants. Selection of these options will call upon the following functions.

[Z, Y, ABCD] = rlc2abed(r, L, C, g, f, Length) computes and returns the 7
model parameters and the transmission constants when r in ohm, Z in mH, and C
in pF per unit length, frequency, and line length are specified.

[Z, Y, ABCD] = zy2abcd(z, y, Length) computes and returns the 7 model
parameters and the transmission constants when impedance and admittance per
unit length are specified.

[Z, Y, ABCD] = pi2abed(Z, Y) returns the ABCD constants when the 7
model parameters are specified.

[Z, Y, ABCD] = abcd2pi(A, B, C) returns the 7 model parameters when the
transmission constants are specified.

[L , C] = gmd2lc computes and returns the inductance and capacitance per
phase when the line configuration and conductor dimensions are specified.

[r, L, C, f] = abcd2rlc(ABCD) returns the line parameters per unit length and
frequency when the transmission constants are specified.
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Any of the above functions can be used independently when the arguments of
the functions are defined in the MATLAB environment. If the above functions are
typed without the parenthesis and the arguments, the user will be prompted to enter
the required data. Next the lineperf loads the program listmenu which displays a
list of eight options for transmission line analysis and compensation. Selection of
these options will call upon the following functions.

givensr(ABCD) prompts the user to enter Vg, Pr and Qg. This function
computes Vs, Pg, Qg, line losses, voltage regulation, and transmission efficiency.

givenss(ABCD) prompts the user to enter Vg, Ps and Q. This function com-
putes Vg, PR, QR, line losses, voltage regulation, and transmission efficiency.

givenzl(ABCD) prompts the user to enter Vi and the load impedance. This
function computes Vs, Ps, Qg, line losses, voltage regulation, and transmission
efficiency.

openline(ABCD) prompts the user to enter Vs. This function computes Vg
for the open-ended line. Also, the reactance and the Mvar of the necessary reactor
to maintain the receiving end voltage at a specified value are obtained. In addition,
the function plots the voltage profile of the line.

shcktlin(ABCD) prompts the user to enter V. This function computes the
current at both ends of the line for a solid short circuit at the receiving end.

Option 6 is for capacitive compensation and calls upon compmenu which
displays three options. Selection of these options will call upon the following func-
tions.

shntcomp(ABCD) prompts the user to enter Vi, Pr, Qr and the desired V5.
This function computes the capacitance and the Mvar of the shunt capacitor bank
to be installed at the receiving end in order to maintain the specified V. Then, Vg,
Ps, Qs, line losses, voltage regulation, and transmission efficiency are found.

sercomp(ABCD) prompts the user to enter Vg, Pr, Qr, power, and the per-
centage compensation (i.e., X¢ser/ Xjine X 100 ). This function computes the Mvar
of the specified series capacitor and Vg, Pg, @s, line losses, voltage regulation, and
transmission efficiency for the compensated line.

srshcomp(ABCD) prompts the user to enter Vg, Pg, @R, the desired Vg and
the percentage series capacitor compensation. This function computes the capaci-
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tance and the Mvar of a shunt capacitor to be installed at the receiving end in order
to maintain the specified Vg. Also, Vs, Ps, Qg, line losses, voltage regulation, and
transmission efficiency are obtained for the compensated line.

Option 7 loads the pwrcirc(ABCD) which prompts for the receiving end volt-
age. This function constructs the receiving end power circle diagram for various
values of Vg from V up to 1.3Vg.

Option 8 calls upon profmenu which displays two options. Selection of these
options will call upon the following functions:

vprofile(r, L, C, f) prompts the user to enter Vg, rated MVA, power factor,
Vg, Pr, and Qg. This function displays a graph consisting of voltage profiles for
line length up to 1/8 of the line wavelength for the following cases: open-ended
line, line terminated in S1L, short-circuited line, and full-load.

loadabil(L, C, f) prompts the user for Vg, Vg, rated line voltage, and current-
carrying capacity of the line. This function displays a graph consisting of the prac-
tical line loadability curve for § = 30°, the theoretical stability limit curve, and the
thermal limit. This function assumes a lossless line and the plots are obtained for a
line length up to 1/4 of the line wavelength.

Any of the above functions can be used independently when the arguments of the
functions are defined in the MATLAB environment. The ABCD constant is en-
tered as a matrix. If the above functions are typed without the parenthesis and the
arguments, the user will be prompted to enter the required data.

Example 5.9

A three-phase, 60-Hz, 550-kV transmission line is 300 km long. The line parame-
ters per phase per unit length are found to be

r=0.016 Q/km L =097 mH/km C =0.0115 yF/km

(a) Determine the line performance when load at the receiving end is 300 MW, 0.8
power factor lagging at 500 kV.

The command:

lineperf

displays the following menu
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Type of parameters for input Select
Parameters per unit length

r (), g (siemens), L (mH), C (uF) 1
Complex z and y per unit length

r + j*x (1), g + j*b (siemens) 2
Nominal 7 or Eq. 7w model 3

A, B, C, D constants 4
Conductor configuration and dimension 5
To quit 0

Select number of menu — 1

Enter line length = 300

Enter frequency in Hz = 60

Enter line resistance/phase in {}/unit length, r = 0.016
Enter line inductance in mH per unit length, L = 0.97
Enter line capacitance in uF per unit length, C = .0115
Enter line conductance in siemens per unit length, g = O
Enter 1 for medium line or 2 for long line — 2

Equivalent m model

Z’ = 4.57414 + j 107.119 ohms

Y’ = 6.9638e-07 + j 0.00131631 siemens

Zc = 290.496 + j -6.35214 ohms

of = 0.00826172 neper (¢ = 0.377825 radian = 21.6478°

ABCD = [ 0.9295 + 70.0030478 4.5741 + 5107.12 }
—1.3341e — 06 + j0.0012699 0.9295 + ;0.0030478

At this point the program listmenu is automatically loaded and displays the fol-
lowing menu.

Transmission line performance
Analysis Select

To calculate sending end quantities
for specified receiving end MW, Mvar 1
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To calculate receiving end quantities
for specified sending end MW, Mvar 2

To calculate sending end quantities

when load impedance is specified 3
Open-end line and reactive compensation 4
Short-circuited line 5
Capacitive compensation 6
Receiving end circle diagram 7
Loadability curve and voltage profile 8
To quit | 0

Select number of menu — 1

Enter receiving end line-line voltage kV = 500

Enter receiving end voltage phase angle® = 0

Enter receiving end 3-phase power MW = 800

Enter receiving end 3-phase reactive power

(+ for lagging and - for leading power factor) Mvar = 600

Line performance for specified receiving end quantities

Vr = 500 kV (L-L) at 0°

Pr = 800 MW Qr = 600 Mvar

Ir = 1154.7 A at -36.8699° PFr = 0.8 lagging

Vs = 623.511 kV (L-L) at 15.5762°

Is = 903.113 A at -17.6996°, PFs = 0.836039 lagging
Ps = 815.404 MW, Qs = 536.129 Mvar

PL = 15.4040 MW, QL = -64.871 Mvar

Percent Voltage Regulation = 34.1597

Transmission line efficiency = 98.1108

i

At the end of this analysis the listmenu (Analysis Menu) is displayed.

(b) Determine the receiving end quantities and the line performance when 600 MW
and 400 Mvar are being transmitted at 525 kV from the sending end.
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Selecting option 2 of the listmenu results in

Enter sending end line-line voltage kV = 525

Enter sending end voltage phase angle® = 0

Enter sending end 3-phase power MW = 600

Enter sending end 3-phase reactive power

(+ for lagging and ~ for leading power factor) Mvar = 400

Line performance for specified sending end quantities

Vs = 626 kV (L-L) at 0°

Ps = 600 MW, (s = 400 Mvar

Is = 793.016 A at -33.6901°, PFs = 0.83205 lagging
Vr = 417.954 kV (L-L) at -16.3044°

Ir = 1002.6 A at -52.16° PFr = 0.810496 lagging

Pr = 588.261 MW, Qr = 425.136 Mvar

PL = 11.7390 MW, QL = -25.136 Mvar

Percent Voltage Regulation = 35.1383

Transmission line efficiency = 98.0435

(c) Determine the sending end quantities and the line performance when the re-
ceiving end load impedance is 290 {2 at 500 kV.

Selecting option 3 of the listmenu results in
Enter receiving end line-line voltage kV = 500
Enter receiving end voltage phase angle® = 0
Enter sending end complex load impedance 290 + j * 0

Line performance for specified load impedance

Vr = 500 kV (L-L) at 0°

Ir = 995.431 A at 0° PFr = 1

Pr = 862.069 MW, Qr = 0 Mvar

Vs = 507.996 kV (L-L) at 21,5037°

Is = 995.9956 A at 21.7842°, PFs = 0.999988 leading
Ps = 876.341 MW Qs = -4.290 Mvar

PL = 14.272 MW QL = -4.290 Mvar

Percent Voltage Regulation = 9.30464
Transmission line efficiency = 98.3714

(d) Find the receiving end voltage when the line is terminated in an open circuit
and is energized with 500 kV at the sending end. Also, determine the reactance and
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the Mvar of a three-phase shunt reactor to be installed at the receiving end in order
to limit the no-load receiving end voltage to 500 kV.

Selecting option 4 of the listmenu results in

Enter sending end line-line voltage kV = 500
Enter sending end voltage phase angle® = 0

Open line and shunt reactor compensation

Vs = 600 kV (L-L) at 0°
Vr = 5637.92 kV (L-L) at -0.00327893°
Is = 394.394 A at 89.8723°, PFs = 0.0022284 leading

Desired no load receiving end voltage = 500 kV
Shunt reactor reactance = 1519.4 ()
Shunt reactor rating = 164.538 Mvar

The voltage profile for the uncompensated and the compensated line is also found
as shown in Figure 5.9.

Voltage profile of an unloaded line, X ., = 1519 ohms
540 . . T

530
520
510
500 Compensated

Uncompensated

Line
kV' 400} | ]
480 | .
470
460
450

0 50 100 150 200 250 300
Sending end Receiving end

FIGURE 5.9
Compensated and uncompensated voltage profile of open-ended line.

(e) Find the receiving end and the sending end currents when the line is terminated
in a short circuit. '
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Selecting option S of the listmenu results in

Enter sending end line-line voltage kV = 500
Enter sending end voltage phase angle® = 0

Line short-circuited at the receiving end

Vs = 500 kV (L-L) at 0°
Ir 2692.45 A at -87.5549°
Is 2502.65 A at -87.367°

(f) The line loading in part (a) resulted in a voltage regulation of 34.16 percent,
which is unacceptably high. To improve the line performance, the line is compen-
sated with series and shunt capacitors. For the loading condition in (a):

(1) Determine the Mvar and the capacitance of the shunt capacitors to be in-
stalled at the receiving end to keep the receiving end voltage at 500 kV when the
line is energized with 500 kV at the sending end.

Selecting option 6 will display the compmenu as follows:

Capacitive compensation

Analysis Select
Shunt capacitive compensation 1
Series capacitive compensation 2
Series and shunt capacitive compensation 3
To quit 0

Selecting option 1 of the compmenu results in

Enter sending end line-line voltage kV = 500

Enter desired receiving end line-line voltage kV = 500
Enter receiving end voltage phase angle® = 0

Enter receiving end 3-phase power MW = 800

Enter receiving end 3-phase reactive power

(+ for lagging and - for leading power factor) Mvar = 600
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Shunt capacitive compensation

Vs = 500 kV (L-L) at 20.2479°

Vr = 500 kV (L-L) at 0°

Pload = 800 MW, Qload = 600 Mvar

Load current = 1154.7 A at -36.8699°, PF1l = 0.8 lagging
Required shunt capacitor: 407.267 £}, 6.51314 uF,613.849 Mvar
Shunt capacitor current = 708.811 A at 90°

Pr = 800.000 MW, Qr = -13.849 Mvar

Ir = 923.899 A at 0.991732°, PFr = 0.99985 leading
Is = 940.306 A at 24.121° PFs = 0.997716 leading
Ps = 812.469 MW, Qs = -55.006 Mvar

PL = 12.469 MW, QL = -41.158 Mvar

Percent Voltage Regulation = 7.58405
Transmission line efficiency = 98.4653

(2) Determine the line performance when the line is compensated by series
capacitors for 40 percent compensation with the load condition in (a) at 500 kV.

Selecting option 2 of the compmenu results in

Enter receiving end line-line voltage kV = 500
Enter receiving end voltage phase angle® = 0
Enter receiving end 3-phase power MW = 800
Enter receiving end 3-phase reactive power

(+ for lagging and - for leading power factor) Mvar = 600
Enter percent compensation for series capacitor
(Recommended range 25 to 75} of the line reactance) = 40

Series capacitor compensation

Vr = 500 kV (L-L) at 0°

Pr = 800 MW, Qr = 600 Mvar

Required series capacitor:42.8476 (), 61.9074 uF, 47.4047 Mvar
Subsynchronous resonant frequency = 37.9473 Hz

Ir = 1154.7 A at -36.8699°, PFr = 0.8 lagging

Vs = 571.904 kV (L-L) at 9.95438°

Is = 932.258 A at -18.044°, PFs = 0.882961 lagging
Ps = 815.383 MW, Qs = 433.517 Mvar

PL = 15.383 MW, QL = -166.483 Mvar

Percent Voltage Regulation = 19.4322
Transmission line efficiency = 98.1134
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(3) The line has 40 percent series capacitor compensation and supplies the
load in (a). Determine the Mvar and the capacitance of the shunt capacitors to be
installed at the receiving end to keep the receiving end voltage at 500 kV when line
is energized with 500 kV at the sending end.

Selecting option 3 of the compmenu results in

Enter sending end line-line voltage kV = 500

Enter desired receiving end line-line voltage kV = 500
Enter receiving end voltage phase angle® = 0

Enter receiving end 3-phase power MW = 800

Enter receiving end 3-phase reactive power

(+ for lagging and - for leading power factor) Mvar = 600
Enter percent compensation for series capacitor
(Recommended range 25 to 75% of the line reactance) = 40

Series and shunt capacitor compensation

Vs = 500 kV (L-L) at 12.0224°

Vr = 500 kV (L-L) at 0°

Pload = 800 MW, Qload = 600 Mvar

Load current = 1154.7 A at -36.8699°, PF1l = 0.8 lagging
Required shunt capacitor: 432.736 Q, 6.1298 yF, 577.72 Mvar
Shunt capacitor current = 667.093 A at 90°

Required series capacitor: 42.8476 Q}, 61.9074 uF,37.7274 Mvar
Subsynchronous resonant frequency = 37.9473 Hz

Pr = 800 MW, Qr = 22.2804 Mvar

Ir = 924.119 A at -1.5953°, PFr = 0.999612 lagging
Is = 951.165 A at 21.5977°, PFs = 0.986068 leading
Ps = 812.257 MW, Qs = ~137.023 Mvar

PL = 12,257 MW, QL = -159.304 Mvar

Percent Voltage Regulation = 4.41619
Transmission line efficiency = 98.491

(g) Construct the receiving end circle diagram.
Selecting option 7 of the listmenu results in

Enter receiving end line-line voltage kV = 500

A plot of the receiving end circle diagram is obtained as shown in Figure 5.10.
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Power circle diagram V;: from V. to 1.3V,

1000 . : .
500 | ]
QT}
0 13
Mvar \\1 25
12
1.15
1.1
1.05
—500} 1.0 :
—1000, 500 1000 1500 2000
P, MW
FIGURE 5.10

Receiving end circle diagram.

(h) Determine the line voltage profile for the following cases: no-load, rated load,
line terminated in the S1L, and short-circuited line.

Selecting option 8 of the listmenu results in

Voltage profile and line loadability

Analysis Select
Voltage profile curves 1
Line loadability curve 2
To quit 0

Selecting option 1 of the profmenu results in
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Voltage profile for length up to 1/8 wavelength, Z, = 290.5 ohms

800 T T ¥ T T T T ]
700 | No-load -
600 .
500 SIL .
Ve 400 1
300 Rated load
200 .
100 -
0 1 1 1 L 1 I Shrt-cukt
0 100 200 300 400 500 600 700 800
Sending end Receiving end
FIGURE 5.11

Voltage profile for length up to 1/8 wavelength.

Loadability curve for length up to 1/4 wavelength

8 ¥ T T T T T
SIL = 860.8 MW, delta = 30 degrees
7r i
6 _
5F i
PU. 4l |
SIL Thermal limit
3r i
2r . e T
Theoretical stability limit
1r Practical line loadability ’
OO 200 400 600 800 1000 1200 1400
Line length
FIGURE 5.12

Line loadability curve for length up to 1/4 wavelength.
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Enter sending end line-line voltage kV = 500
Enter rated sending end power, MVA = 1000
Enter power factor = 0.8

A plot of the voltage profile is obtained as shown in Figure 5.11 (page 182).

(i) Obtain the line loadability curves.
Selecting option 2 of the profmenu results in

Enter sending end line-line voltage kV = 500

Enter receiving end line-line voltage kV = 500

Enter rated line-line voltage kV = 500

Enter line current-carrying capacity, Amp/phase = 3500

The line loadability curve is obtained as shown in Figure 5.12 (page 182).

PROBLEMS

5.1. A 69-kV, three-phase short transmission line is 16 km long. The line has a per
phase series impedance of 0.125+50.4375 2 per km. Determine the sending
end voltage, voltage regulation, the sending end power, and the transmission
efficiency when the line delivers

(a) 70 MVA, 0.8 lagging power factor at 64 kV.
(b) 120 MW, unity power factor at 64 kV.

Use lineperf program to verify your results.

5.2. Shunt capacitors are installed at the receiving end to improve the line perfor-
mance of Problem 5.1. The line delivers 70 MVA, 0.8 lagging power factor
at 64 kV. Determine the total Mvar and the capacitance per phase of the
Y-connected capacitors when the sending end voltage is

(a) 69 kV.
(b) 64 kV.

Hint: Use (5.85) and (5.86) to compute the power angle 4 and the receiving
end reactive power.

(c) Use lineperf to obtain the compensated line performance.
5.3. A 230-kV, three-phase transmission line has a per phase series impedance
of z = 0.05 + 50.45 §2 per km and a per phase shunt admittance of y =

33.4 x 107° siemens per km. The line is 80 km long. Using the nominal
model, determine

(a) The transmission line ABCD constants.
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54.

5.5.

5.6.

5.7.

Find the sending end voltage and current, voltage regulation, the sending end
power and the transmission efficiency when the line delivers

(b) 200 MVA, 0.8 lagging power factor at 220 kV.
(c) 306 MW, unity power factor at 220 kV.

Use lineperf program to verify your results.

Shunt capacitors are installed at the receiving end to improve the line perfor-
mance of Problem 5.3. The line delivers 200 MVA, 0.8 lagging power factor
at 220 kV.

(a)Determine the total Mvar and the capacitance per phase of the Y-connected
capacitors when the sending end voltage is 220 kV. Hint: Use (5.85) and
(5.86) to compute the power angle ¢ and the receiving end reactive power.
(b) Use lineperf to obtain the compensated line performance.

A three-phase, 345-kV, 60-Hz transposed line is composed of two ACSR,
1,113,000-cmil, 45/7 Bluejay conductors per phase with flat horizontal spac-
ing of 11 m. The conductors have a diameter of 3.195 cm and a GMR of
1.268 cm. The bundle spacing is 45 cm. The resistance of each conductor
in the bundle is 0.0538 2 per km and the line conductance is negligible.
The line is 150 km long. Using the nominal 7 model, determine the ABCD
constant of the line. Use lineperf and option 5 to verify your results.

The ABCD constants of a three-phase, 345-kV transmission line are

A= D = 0.98182 + j0.0012447
B = 4.035 + j58.947
C = j0.00061137

The line delivers 400 MVA at 0.8 lagging power factor at 345 kV. Determine
the sending end quantities, voltage regulation, and transmission efficiency.

Write a MATLAB function named [ABCD] = abedm(z, y, Lngt) to evaluate
and return the ABCD transmission matrix for a medium-length transmis-
sion line where z is the per phase series impedance per unit length, y is the
shunt admittance per unit length, and Lngt is the line length. Then, write a
program that uses the above function and computes the receiving end quan-
tities, voltage regulation, and the line efficiency when sending end quantities
are specified. The program should prompt for the following quantities:

The sending end line-to-line voltage magnitude in kV
The sending end voltage phase angle in degrees
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The three-phase sending end real power in MW
The three-phase sending end reactive power in Mvar

Use your program to obtain the solution for the following case.

A three-phase transmission line has a per phase series impedance of z =
0.03 + j0.4  per km and a per phase shunt admittance of y = j4.0 x 10~6
siemens per km. The line is 125 km long. Obtain the ABCD transmission
matrix. Determine the receiving end quantities, voltage regulation, and the
line efficiency when the line is sending 407 MW, 7.833 Mvar at 350 kV.

Obtain the solution for Problems 5.8 through 5.13 using the lineperf pro-
gram. Then, solve each problem using hand calculations.

A three-phase, 765-kV, 60-Hz transposed line is composed of four ACSR,
1,431,000-cmil, 45/7 Bobolink conductors per phase with flat horizontal
spacing of 14 m. The conductors have a diameter of 3.625 cm and a GMR
of 1.439 cm. The bundle spacing is 45 cm. The line is 400 km long, and for
the purpose of this problem, a lossless line is assumed.

(a) Determine the transmission line surge impedance Z,, phase constant 3,
wavelength ), the surge impedance loading SIL, and the ABCD constant.
(b) The line delivers 2000 MVA at 0.8 lagging power factor at 735 kV. De-
termine the sending end quantities and voltage regulation.

(c) Determine the receiving end quantities when 1920 MW and 600 Mvar
are being transmitted at 765 kV at the sending end.

(d) The line is terminated in a purely resistive load. Determine the sending
end quantities and voltage regulation when the receiving end load resistance
is 264.5 §2 at 735 kV.

The transmission line in Problem 5.8 is energized with 765 kV at the sending
end when the load at the receiving end is removed.

(a) Find the receiving end voltage.

(b) Determine the reactance and the Mvar of a three-phase shunt reactor to
be installed at the receiving end in order to limit the no-load receiving end
voltage to 735 kV.

5.10. The transmission line in Problem 5.8 is energized with 765 kV at the sending

S.11.

end when a three-phase short-circuit occurs at the receiving end. Determine
the receiving end current and the sending end current.

Shunt capacitors are installed at the receiving end to improve the line per-
formance of Problem 5.8. The line delivers 2000 MVA, 0.8 lagging power
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5.12.

5.13.

5.14.

factor. Determine the total Mvar and the capacitance per phase of the Y-
connected capacitors to keep the receiving end voltage at 735 kV when the
sending end voltage is 765 kV. Hint: Use (5.93) and (5.94) to compute the
power angle ¢ and the receiving end reactive power. Find the sending end
quantities and voltage regulation for the compensated line.

Series capacitors are installed at the midpoint of the line in Problem 5.8,
providing 40 percent compensation. Determine the sending end quantities
and the voltage regulation when the line delivers 2000 MVA at 0.8 lagging
power factor at 735 kV.

Series capacitors are installed at the midpoint of the line in Problem 5.8, pro-
viding 40 percent compensation. In addition, shunt capacitors are installed at
the receiving end. The line delivers 2000 MVA, 0.8 lagging power factor. De-
termine the total Mvar and the capacitance per phase of the series and shunt
capacitors to keep the receiving end voltage at 735 kV when the sending end
voltage is 765 kV. Find the sending end quantities and voltage regulation for
the compensated line.

The transmission line in Problem 5.8 has a per phase resistance of 0.011
per km. Using the lineperf program, perform the following analysis and
present a summary of the calculation along with your conclusions and rec-
ommendations.

(a) Determine the sending end quantities for the specified receiving end
quantities of 735/0°, 1600 MW, 1200 Mvar.

(b) Determine the receiving end quantities for the specified sending end
quantities of 76520°, 1920 MW, 600 Mvar.

(c) Determine the sending end quantities for a load impedance of 282.38 +
7O §2 at 735 kV.

(d) Find the receiving end voltage when the line is terminated in an open
circuit and is energized with 765 kV at the sending end. Also, determine the
reactance and the Mvar of a three-phase shunt reactor to be installed at the
receiving end in order to limit the no-load receiving end voltage to 765 kV.
Obtain the voltage profile for the uncompensated and the compensated line.
(e) Find the receiving end and the sending end current when the line is ter-
minated in a three-phase short circuit.

(f) For the line loading of part (a), determine the Mvar and the capacitance of
the shunt capacitors to be installed at the receiving end to keep the receiving
end voltage at 735 kV when line is energized with 765 kV. Obtain the line
performance of the compensated line.

(8) Determine the line performance when the line is compensated by series
capacitor for 40 percent compensation with the load condition in part (a) at
735 kV.
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(h) The line has 40 percent series capacitor compensation and supplies the
load in part (a). Determine the Mvar and the capacitance of the shunt capac-
itors to be installed at the receiving end to keep the receiving end voltage at
735 kV when line is energized with 765 kV at the sending end.

(1) Obtain the receiving end circle diagram.

(§) Obtain the line voltage profile for a sending end voltage of 765 kV.

(k) Obtain the line loadability curves when the sending end voltage is 765
kV, and the receiving end voltage is 735 kV. The current-carrying capacity
of the line is 5000 A per phase.

The ABCD constants of a lossless three-phase, 500-kV transmission line are

A=D =086+ 350
B =0+ ;130.2
C = 50.002

(a) Obtain the sending end quantities and the voltage regulation when line
delivers 1000 MVA at 0.8 lagging power factor at 500 kV.

To improve the line performance, series capacitors are installed at both ends
in each phase of the transmission line. As a result of this, the compensated
ABCD constants become

A B 1_[1 -4iXx.1[A B][1 -iiX,
c' D 0 1 ¢ Djl0 1

where X, is the total reactance of the series capacitor. If X, = 100

(b) Determine the compensated ABCD constants.
(c) Determine the sending end quantities and the voltage regulation when
line delivers 1000 MVA at 0.8 lagging power factor at 500 kV.

A three-phase 420-kV, 60-HZ transmission line is 463 km long and may
be assumed lossless. The line is energized with 420 kV at the sending end.
When the load at the receiving end is removed, the voltage at the receiving
end is 700 kV, and the per phase sending end current is 646.6/90° A.

(a) Find the phase constant 3 in radians per km and the surge impedance Z,
in Q.

(b) Ideal reactors are to be installed at the receiving end to keep |Vs| =
[VRr| = 420 kV when load is removed. Determine the reactance per phase
and the required three-phase kvar.

A three-phase power of 3600 MW is to be transmitted via four identical
60-Hz transmission lines for a distance of 300 km. From a preliminary line









188 5. LINE MODEL AND PERFORMANCE

5.18.

design, the line phase constant and surge impedance are given by 8 = 9.46 x
10~4 radian/km and Z, = 343 Q, respectively.

Based on the practical line loadability criteria determine the suitable nominal
voltage level in kV for each transmission line. Assume Vg = 1.0 per unit,
Vr = 0.9 per unit, and the power angle § = 36.87°.

Power system studies on an existing system have indicated that 2400 MW
are to be transmitted for a distance of 400 km. The voltage levels being
considered include 345 kV, 500 kV, and 765 kV. For a preliminary design
based on the practical line loadability, you may assume the following surge
impedances ‘

345kV  Zc =320 9
500kV  Zo =290
T65kV  Zg = 265 Q

The line wavelength may be assumed to be 5000 km. The practical line load-
ability may be based on a load angle § of 35°. Assume |Vg| = 1.0 pu and
|Vr| = 0.9 pu. Determine the number of three-phase transmission circuits
required for each voltage level. Each transmission tower may have up to two
circuits, To limit the corona loss, all 500-kV lines must have at least two con-
ductors per phase, and all 765-kV lines must have at least four conductors
per phase. The bundle spacing is 45 cm. The conductor size should be such
that the line would be capable of carrying current corresponding to at least
5000 MVA. Use aesr command in MATLAB to find a suitable conductor size.
Following are the minimum recommended spacings between adjacent phase
conductors at various voltage levels.

Voltage level, kV  Spacing meter
345 7.0
500 9.0
765 12.5

(a) Select a suitable voltage level, and conductor size, and tower structure.
Use lineperf program and option 1 to obtain the voltage regulation and trans-
mission efficiency based on a receiving end power of 3000 MVA at 0.8 power
factor lagging at the selected rated voltage. Modify your design and select a
conductor size for a line efficiency of at least 94 percent for the above spec-
ified load.

(b) Obtain the line performance including options 4-8 of the lineperf pro-
gram for your final selection. Summarize the line characteristics and the re-
quired line compensation.




CHAPTER

6

- POWER FLOW ANALYSIS

6.1 INTRODUCTION

In the previous chapters, modeling of the major components of an electric power
system was discussed. This chapter deals with the steady-state analysis of an in-
terconnected power system during normal operation. The system is assumed to be
operating under balanced condition and is represented by a single-phase network.
The network contains hundreds of nodes and branches with impedances specified
in per unit on a common MVA base.

Network equations can be formulated systematically in a variety of forms.
However, the node-voltage method, which is the most suitable form for many
power system analyses, is commonly used. The formulation of the network equa-
tions in the nodal admittance form results in complex linear simultaneous algebraic
equations in terms of node currents. When node currents are specified, the set of
linear equations can be solved for the node voltages. However, in a power system,
powers are known rather than currents. Thus, the resulting equations in terms of
power, known as the power flow equation, become nonlinear and must be solved
by iterative techniques. Power flow studies, commonly referred to as load flow, are
the backbone of power system analysis and design. They are necessary for plan-
ning, operation, economic scheduling and exchange of power between utilities. In
addition, power flow analysis is required for many other analyses such as transient
stability and contingency studies.

189
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In this chapter, the bus admittance matrix of the node-voltage equation is
formulated, and a MATLAB function named ybus is developed for the system-
atic formation of the bus admittance matrix. Next, two commonly used iterative
techniques, namely Gauss-Seidel and Newton-Raphson methods for the solution
of nonlinear algebraic equations, are discussed. These techniques are employed in
the solution of power flow problems. Three programs Ifgauss, ifnewton, and de-
couple are developed for the solution of power flow problems by Gauss-Seidel,
Newton-Raphson, and the fast decoupled power flow, respectively.

6.2 BUS ADMITTANCE MATRIX

In order to obtain the node-voltage equations, consider the simple power system
shown in Figure 6.1 where impedances are expressed in per unit on a common
MVA base and for simplicity resistances are neglected. Since the nodal solution is
based upon Kirchhoff’s current law, impedances are converted to admittance, i.e.,

vii = 1 1
Yz i+ g

FIGURE 6.1
The impedance diagram of a simple system.
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FIGURE 6.2

The admittance diagram for system of Figure 6.1.

The circuit has been redrawn in Figure 6.2 in terms of admittances and trans-
formation to current sources. Node 0 (which is normally ground) is taken as refer-
ence. Applying KCL to the independent nodes 1 through 4 results in

I = y10V1 + y12(V1 = Vo) + y13(V1 — Vi)

Iz = yoo Vo + y12(Va — V1) + ya3(Va — V3)
0 =1ya3(Vs — V2) + y13(V3a — V1) + y3a(V3 — Vi)
0 =y34(Va — V3)

Rearranging these equations yields

Iy = (y10 + y12 + v13)V1 — y12V2 — y13V3

Iz = —y12V1 + (y20 + y12 + y23) Va2 — y23V3
0= —y13V1 — ya3Vo + (y13 + y23 + ¥34) V3 — y34Vs
0= ~y34V3 + y34Vs

We introduce the following admittances

Y11 =yi0+ 112 + y13
Y22 = y20 + y12 + Y23
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Y33 = 413 + Y23 + Y34

Yiq =y34

Yi2 =Yo1 = —y12

Yiz =Y3 = —y13

Yas = Y32 = —ya3

Y34 =Yi3 = ~y34
The node equation reduces to

I =YW + Yi2Va + Yi3Va + Y4V

I =YnVi +YoVo + Ya3V3 + YauVy

I3 = Y31 Vi + Yo Vo + YasV3 + Y34V

Is = YaVi + Yoo Vo + Y3 Va + Yyu V.
In the above network, since there is no connection between bus 1 and 4, Yi4 =
Yy = 0; similarly Yoq = Yo = 0.

Extending the above relation to an n bus system, the node-voltage equation
in matrix form is

i Il i [ Yll Y12 ‘es }/11’ [P Yln 1T ‘/'1 T
I2 Y21 Y’22 “ee )/21 “ee }/2”, ‘/2
=1y, v : E 5 6.1
Iz Kl Y;:2 o . YL’L . e },1:11, ‘/; ( )
| In ] | Ynl Yn2 . Ym' Ynn 11 Vn ]
or
Tous = Ypus Vipus (6.2)

where Iy is the vector of the injected bus currents (i.e., external current sources).
The current is positive when flowing towards the bus, and it is negative if flowing
away from the bus. Vy,, is the vector of bus voltages measured from the reference
node (i.e., node voltages). Y, is known as the bus admittance matrix. The diag-
onal element of each node is the sum of admittances connected to it. It is known as
the self-admittance or driving point admittance, i.e.,

n
Yii= Zyij j#i (6.3)
3=0

The off-diagonal element is equal to the negative of the admittance between the
nodes. It is known as the mutual admittance or transfer admittance, i.c.,

Yij =Y = -y (6.4)
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‘When the bus currents are known, (6.2) can be solved for the n bus voltages.
Vius = Yo Tpus (6.5)

The inverse of the bus admittance matrix is known as the bus impedance matrix
Zpus- The admittance matrix obtained with one of the buses as reference is nonsin-
gular. Otherwise the nodal matrix is singular.

Inspection of the bus admittance matrix reveals that the matrix is symmetric
along the leading diagonal, and we need to store the upper triangular nodal ad-
mittance matrix only. In a typical power system network, each bus is connected to
only a few nearby buses. Consequently, many off-diagonal elements are zero. Such
a matrix is called sparse, and efficient numerical techniques can be applied to com-
pute its inverse. By means of an appropriately ordered triangular decomposition,
the inverse of a sparse matrix can be expressed as a product of sparse matrix fac-
tors, thereby giving an advantage in computational speed, storage and reduction of
round-off errors. However, Zy,, s, which is required for short-circuit analysis, can be
obtained directly by the method of building algorithm without the need for matrix
inversion. This technique is discussed in Chapter 9.

Based on (6.3) and (6.4), the bus admittance matrix for the network in Figure
6.2 obtained by inspection is :

—j850  j2.50  45.00 0
v — | J250 —j875 5500 0
bus =1 j500 §5.00 —j22.50  §12.50

0 0 412.50 —j12.50

A function called Y = ybus(zdata) is written for the formation of the bus
admittance matrix. zdata is the line data input and contains four columns. The
first two columns are the line bus numbers and the remaining columns contain the
line resistance and reactance in per unit. The function returns the bus admittance
matrix. The algorithm for the bus admittance program is very simple and basic to
power system programming. Therefore, it is presented here for the reader to study
and understand the method of solution. In the program, the line impedances are
first converted to admittances. Y is then initialized to zero. In the first loop, the
line data is searched, and the off-diagonal elements are entered. Finally, in a nested
loop, line data is searched to find the elements connected to a bus, and the diagonal
elements are thus formed.

The following is a program for building the bus admittance matrix:

function[Y] = ybus(zdata)

nl=zdata(:,1); nr=zdata(:,2); R=zdata(:,3); X=zdata(:,4);
nbr=length(zdata(:,1)); nbus = max(max(nl), max(nr));

Z =R + j*X; %#branch impedance
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y= ones{(nbr,1)./Z; J%branch admittance
Y = zeros(nbus,nbus); % initialize Y to zero
for k = 1:nbr; % formation of the off diagonal elements

if n1(k) > 0 & nr(k) > O
Y(nl(k),nr(k)) = Y(nl(k),nr(k)) - y(k);
Y(ar (k) ,nl(k)) = Y(nl(k),nr(k));

end

]

end
for n = 1:nbus % formation of the diagonal elements
for k = 1:nbxr
if nl(k) == n | nr(k) ==
Y(n,n) = Y(n,n) + y(k);
else, end
end
end

Example 6.1

The emfs shown in Figure 6.1 are £} = 1.1/0° and E5 = 1.0£0°. Use the func-
tion Y = ybus(zdata) to obtain the bus admittance matrix. Find the bus impedance
matrix by inversion, and solve for the bus voltages.

With source transformation, the equivalent current sources are

1.1 .
Il ‘710 Jl.l pu
1.0 .
I 708 = 71.25 pu
The following commands
% From To R X
z=1[0 1 0 1.0
0 2 0 0.8
1 2 0 0.4
1 3 0 0.2
2 3 0 0.2
3 4 0 0.08];
Y = ybus(z) % bus admittance matrix
Ibus = [-j*1.1; -j*1.25; 0; 0]; % vector of bus currents
Zbus = inv(Y) % bus impedance matrix
Vbus = Zbus*Ibus

result in
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Y =
0 - 8.50i 0 + 2.50i 0 + 5.00i 0+ 0.00i
0 + 2.50i 0 - 8.751 0+ 5.00i 0+ 0.00i
0 + 5.001 0 + 5.001 0 - 22.50i 0 + 12.501
0 + 0.00i 0 + 0.001 0+ 12.501 0 - 12.501i
Zbus =
0 + 0.501 0 + 0.401 0 + 0.450i 0 + 0.450i
0 + 0.401 0 + 0.48i 0 + 0.440i 0 + 0.4401
0 + 0.45i 0+ 0.44i 0 + 0.545i 0 + 0.5451
0 + 0.451 0 + 0.441 0 + 0.545i1 0 + 0.6251
Vbus =
1.0500
1.0400
1.0450
1.0450

The solution of equation Iy, s = Y, Vs by inversion is very inefficient. It
is not necessary to obtain the inverse of Yy,,. Instead, direct solution is obtained
by optimally ordered triangular factorization. In MATLAB, the solution of linear
simultaneous equations AX = B is obtained by using the matrix division operator
\ (ie., X = A\ B), which is based on the triangular factorization and Gaussian
elimination. This technique is superior in both execution time and numerical accu-
racy. It is two to three times as fast and produces residuals on the order of machine
accuracy.

In Example 6.1, obtain the direct solution by replacing the statements Zbus =
inv(Y) and Vbus = Zbus*Ibus with Vbus = Y\ Ibus.

6.3 SOLUTION OF NONLINEAR
ALGEBRAIC EQUATIONS

The most common techniques used for the iterative solution of nonlinear algebraic
equations are Gauss-Seidel, Newton-Raphson, and Quasi-Newton methods. The
Gauss-Seidel and Newton-Raphson methods are discussed for one-dimensional
equation, and are then extended to n-dimensional equations.

6.3.1 GAUSS-SEIDEL METHOD

The Gauss-Seidel method is also known as the method of successive displace-
ments. To illustrate the technique, consider the solution of the nonlinear equation
given by

flz)=0 ) (6.6)
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The above function is rearranged and written as

z = g(x) 6.7)

If %) is an initial estimate of the variable z, the following iterative sequence is
formed.

ﬂi(k+1) — g(x(k)) (6.8)

A solution is obtained when the difference between the absolute value of the suc-
cessive iteration is less than a specified accuracy, i.e.,

|a:(’°+1) - fl«’(k)l <e 6.9)
where ¢ is the desired accuracy.

Example 6.2

Use the Gauss-Seidel method to find a root of the following equation
flz)=2®~6224+9c-4=0

Solving for z, the above expression is written as

14 6, 4
T = gm-l-gm—i—g
= g(z)

The MATLAB plot command is used to plot g(z) and z over a range of 0 to 4.5,
as shown in Figure 6.3. The intersections of g(x) and z results in the roots of
f(z). From Figure 6.3 two of the roots are found to be 1 and 4. Actually, there
is a repeated root at z = 1. Apply the Gauss-Seidel algorithm, and use an initial
estimate of

2@ =2

From (6.8), the first iteration is
1 6 4
M = g(2) = =2(2)3 + 2(2)2 + = = 2.9222
o® = g(2) = —5(2)° + S(2) + 5
The second iteration is
2 = g(2.2222) = -%(2.2222)3 + 2(2.2222)2 + g = 2.5173

The subsequent iterations result in 2.8966, 3.3376, 3.7398, 3.9568, 3.9988 and
4.0000. The process is repeated until the change in variable is within the desired
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FIGURE 6.3
Graphical illustration of the Gauss-Seidel method.

accuracy. It can be seen that the Gauss-Seidel method needs many iterations to
achieve the desired accuracy, and there is no guarantee for the convergence. In this
example, since the initial estimate was within a “boxed in” region, the solution
converged in a zigzag fashion to one of the roots. In fact, if the initial estimate
was outside this region, say 2(®) = 6, the process would diverge. A test of conver-
gence, especially for the n-dimensional case, is difficult, and no general methods
are known.

The following commands show the procedure for the solution of the given
equation starting with an initial estimate of z(9) =2,

dx=1; % Change in variable is set to a high value
=2; % Initial estimate
iter = 0; 7 Iteration counter
disp(’Iter g dx x’)/Heading for results
while abs(dx) >= 0.001 & iter < 100 %Test for convergence
iter = iter + 1; % No. of iterations
g = -1/9%x"3+6/9*x"2+4/9 ;
dx = g-x; % Change in variable
x = x + dx; % Successive approximation
fprintf(’lg’, iter), disp(lg, dx, x])
end

The result is -
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Iter g dx X

i 2.2222 0.2222 2,2222
2 2.5173 0.29561 2.5173
3 2.8966 0.3793 2.8966
4 3.3376 0.4410 3.3376
5 3.7398 0.4022 3.7398
6 3.9568 0.2170 3.9568
7 3.9988 0.0420 3.9988
8 4.0000 0.0012 4.0000
9 4.0000 0.0000 4.0000

In some cases, an acceleration factor can be used to improve the rate of conver-
gence. If a > 1 is the acceleration factor, the Gauss-Seidel algorithm becomes

D) = z8) 4 ofg(z®)) — z®)] (6.10)

Example 6.3
Find a root of the equation in Example 6.2, using the Gauss-Seidel method with an
acceleration factor of & = 1.25:

Starting with an initial estimate of z(®) = 2 and using (6.10), the first iteration is

1 6 4

2) = ——(2@¥+-(2%*+-=222

9(2) g(&)" + 527 +5=22222
2 = 241.25[2.2222 — 2] = 2.2778

The second iteration is

4
9(2.2778) = —%(2.2778)3 + 8(2.2778)2 + 5 = 25902

2 2.2778 4 1.25[2.5902 — 2.2778] = 2.6683

2

The subsequent iterations result in 3.0801, 3.1831, 3.7238, 4.0084, 3.9978 and
4.0005. The effect of acceleration is shown graphically in Figure 6.4. Care must
be taken not to use a very large acceleration factor since the larger step size may
result in an overshoot. This can cause an increase in the number of iterations or
even result in divergence. In the MATLAB command of Example 6.2, replace the
command before the end statement by & = z + 1.25 * dz to reflect the effect of the
acceleration factor and run the program.
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FIGURE 6.4
Graphical illustration of the Gauss-Seidel method using acceleration factor.

We now consider the system of n equations in n variables

f1($1,$2,"',$n)=01 )
fo(z1, 22, -+, 2n) = €2 6.11)
fn(ml)m% th a‘x’n.) =Cp

Solving for one variable from each equation, the above functions are rearranged
and written as '

Ty = c1 + g1(21, %2, +, Tn)
x2 = cg + go(T1, T2, -+, Tp) (6.12)

.....................

Tnp = Cp +gn(-’1"1,372,“ * )xn)

The iteration procedure is initiated by assuming an approximate solution for each
of the independent variables (x§°), xg") e ,a:ﬁ,o)). Equation (6.12) results in a new
approximate solution (xﬁl) , mgl) ce :csll)). In the Gauss-Seidel method, the updated
values of the variables calculated in the preceding equations are immediately used
in the solution of the subsequent equations. At the end of each iteration, the cal-
culated values of all variables are tested against the previous values. If all changes
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in the variables are within the specified accuracy, a solution has converged, oth-
erwise another iteration must be performed. The rate of convergence can often be
increased by using a suitable acceleration factor «, and the iterative sequence be-
comes

gD = 20 4 (D _ (0 (6.13)

1 cal

6.3.2 NEWTON-RAPHSON METHOD

The most widely used method for solving simultaneous nonlinear algebraic equa-
tions is the Newton-Raphson method. Newton’s method is a successive approxima-
tion procedure based on an initial estimate of the unknown and the use of Taylor’s
series expansion. Consider the solution of the one-dimensional equation given by

fl@)y=c (6.14)

If (%) is an initial estimate of the solution, and Az(© is a small deviation from the
correct solution, we must have

f(@@ + A2y = ¢
Expanding the left-hand side of the above equation in Taylor’s series about z{®)

yields

df\© WEIAN
f($<0))+(£) Az 4 %fzﬁ (AzO)2 4 ... =

Assuming the error Az(©) is very small, the higher-order terms can be neglected,
which results in

0
Ac® ~ (ﬁ)( )A(L‘(O)
dx
where
A = ¢ — f(z(®)

Adding Az to the initial estimate will result in the second approximation

. (0)
20 = O 4 Ac

Bk
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Successive use of this procedure yields the Newton-Raphson algorithm

Ac®) = ¢ — F(z®) (6.15)
(k)
Agth) = B¢ = (6.16)
(£)
dz
g+ = (k) 4 Ap(k) 6.17)
(6.16) can be rearranged as

AcF) = B Az F) (6.18)

where

k
%) = (fji)( )
dx

The relation in (6.18) demonstrates that the nonlinear equation f(z) —c = 0 is
approximated by the tangent line on the curve at x(k). Therefore, a linear equation
is obtained in terms of the small changes in the variable. The intersection of the
tangent line with the x-axis results in (*+1), This idea is demonstrated graphically
in Example 6.4.

Example 6.4

Use the Newton-Raphson method to find a root of the equation given in Example
6.2. Assume an initial estimate of 2(%) = 6.

The MATLAB plot command is used to plot f(z) = 2% — 622 + 9z — 4 over
a range of 0 to 6 as shown in Figure 6.5. The intersections of f(z) with the z-axis
results in the roots of f(x). From Figure 6.5, two of the roots are found to be 1 and
4. Actually, there is a repeated root at z = 1.

Also, Figure 6.5 gives a graphical description of the Newton-Raphson method.
Starting with an initial estimate of z(®) = 6, we extrapolate along the tangent to
its intersection with the z-axis and take that as the next approximation. This is
continued until successive x-values are sufficiently close.

The analytical solution given by the Newton-Raphson algorithm is

gﬂx—)=3x2—12x+9
dx

Ac® = ¢~ f(z@) =0 — [(6)° — 6(6)% +9(6) — 4] = —50
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FIGURE 6.5
Graphical illustration of the Newton-Raphson algorithm.

(%)(O) = 3(6)% ~ 12(6) + 9 = 45

© _ Ac® —50

(&)° *
XL

Az

= —1.1111

Therefore, the result at the end of the first iteration is
M = 2@ 4+ Az©® = 61,1111 = 4.8889
The subsequent iterations result in

13.4431

@ =z 4 Az(® = 4.8889 — 05 = 42789
2@ = 2@ + Az® = 4.2789 — 122'?597217 = 4.0405
™ =z 4 Az®) = 4.0405 — %g = 4.0011
2® = 2@ 4 Ag® = 40011 — 2299 _ 4 6000

9.0126




6.3. SOLUTION OF NONLINEAR ALGEBRAIC EQUATIONS 203

We see that Newton’s method converges considerably more rapidly than the Gauss-
Seidel method. The method may converge to a root different from the expected one
or diverge if the starting value is not close enough to the root.

The following commands show the procedure for the solution of the given equation
by the Newton-Raphson method.

dx=1; % Change in variable is set to a high value
x=input (’Enter initial estimate -> ’); % Initial estimate
iter = 0; % Iteration counter
disp(’iter Dc J dx x’) h Heading
while abs(dx) >= 0.001 & iter < 100 Test for convergence
iter = iter + 1; % No. of iterations
=0 - (x"3 - 6%x"2 + 9%x - 4); % Residual
J = 3%x"2 - 12%x + 9; % Derivative
dx= Dc/J; #Change in variable
=x + dx; % Successive solution
fprintf(’Jg’, iter), disp([Dc, J, dx, x])
end

The result is

Enter the initial estimate -> 6
iter Dc J dx b 4

1 -50.0000 45.0000 -1.1111 4.8889
2 -13.4431 22.0370 -0.6100 4.2789
3 -2.9981 12.5797 -0.2383 4.0405
4 -0.3748 9.4914 -0.0395 4.0011
5 ~0.0095 9.0126 -0.0011 4.0000
6 -0.0000 9.0000 -0.0000 4.0000

Now consider the n-dimensional equations given by (6.11). Expanding the left-
hand side of the equations (6.11) in the Taylor’s series about the initial estimates
and neglecting all higher order terms, leads to the expression

(0) 0)
(f1)@ + (gh) Az® + (%) Az 4+ (?ﬁ) Az© = ¢,
2

(0) ©
(£2)® 4 (gfz) AL 4 ( %g ) As® 4.t (g_f_) As® = ¢,
2

© © '
(£)© + (Bfn) Az + (%) AsO 4t (Qf_n) Az = ¢,
2
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or in matrix form

[ =)D T T /aa\O 541\ 21\ 1 [ Az{® ]
1= (f1) (&%) (a%) (&%) zy
0 0 0
o — (f2)(o) ~ (%{%)( ) (gm%)( ) (gm%)( ) A:vgo)
Bfn 0) af,\(© fn (0)
La-m@ | | (Ba) (32) (38)7 ] | 2 |
In short form, it can be written as
ACH®) = jE) A x (k)
or
AXK) = [JR-LIA k) (6.19)

and the Newton-Raphson algorithm for the n-dimensional case becomes

XxWt1) _ x (k) L A x (k) (6.20)
where
k
o -
A —_
Ax® = | 2% 1 g o o | 27 (2) (6.21)
Az® cn = (f)®
o5\ o5\ (k) o, \ () T
( (5%) (k) (5%) (k) (a’% (k)
df2 o2 o
J*) — (3-11) (6122)) (&ti) (6.22)
R NG
L (38)7 (&) - (8)"

J®) is called the Jacobian matrix. Elements of this matrix are the partial
derivatives evaluated at X %), It is assumed that J*) has an inverse during each
iteration. Newton’s method, as applied to a set of nonlinear equations, reduces the
problem to solving a set of linear equations in order to determine the values that
improve the accuracy of the estimates.

The solution of (6.19) by inversion is very inefficient. It is not necessary
to obtain the inverse of J(*), Instead, a direct solution is obtained by optimally
ordered triangular factorization. In MATLAB, the solution of linear simultaneous
equations AC' = JAX is obtained by using the matrix division operator \ (i.e.,
AX = J\ AC) which is based on the triangular factorization and Gaussian elim-
ination.
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Example 6.5

Use the Newton-Raphson method to find the intersections of the curves

w% + :c% =
e+, = 1
Graphically, the solution to this system is represented by the intersections of the

circle 3 4+ z% = 4 with the curve e®! + z, = 1. Figure 6.6 shows that these are
near (1, —1.7) and (—1.8, 0.8).

3 T T T T

—2f 1t gy =1

|
w

FIGURE 6.6
Graphs of Example 6.5.

Taking partial derivatives of the above functions results in the Jacobian matrix

2:171 21‘2
=[]

The Newton-Raphson algorithm for the above system is presented in the following
statements.

iter = 0; % Iteration counter
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x=input (’Enter initial estimates, col. vector[x1;x2]->’);

Dx = [1; 1]; 7% Change in variable is set to a high value

C=[4; 1];

disp(’Iter DC Jacobian matrix Dx x’);
% Heading for results

while max(abs(Dx)) >= 0.0001 & iter <10 %Convergence test

iter=iter+1; % Iteration counter
f= [x(1)72+x(2)"2; exp(x(1))+x(2)]1; % Functions
DC =C - f; % Residuals
J = [2%x(1) 2*x(2) % Jacobian matrix
exp(x(1)) 11,

Dx=J\DC; % Change in variables
x=x+Dx; % Successive solutions
fprintf (*%g’, iter), disp([DC, J, Dx, xJ]) % Results
end

When the program is run, the user is prompted to enter the initial estimate.

Let us try an initial estimate given by [0.5; -1].

Enter Initial estimates, col. vector [zi; z3] — [0.5; —1]

Iter AC Jacobian matrix Az z
1 2.7500 1.0000 -2.0000 0.8034 1.3034
0.3513 1.6487 1.0000 -0.9733 -1.9733
2 -1.5928 2.6068 -3.9466 -0.2561 1.0473
-0.7085 3.6818 1.0000 0.2344 -1.7389
3 -0.1205 2.0946 -3.4778 -0.0422 1.0051
-0.1111 2.8499 1.0000 0.0092 -1.7296
4 -0.0019 2.0102 -3.4593 -0.0009 1.0042
-0.0025 2.7321 1.0000 0.0000 -1.7296
5 -0.0000 2.0083 -3.4593 -0.0000 1.0042
-0.0000 2.7296 1.0000 -0.0000 -1.7296
After five iterations, the solution converges to z; = 1.0042 and 3 = —1.7296
accurate to four decimal places. Starting with an initial value of [—0.5; 1], which
is closer to the other intersection, results in z; = —1.8163 and z5 = 0.8374.
Example 6.6

Starting with the initial values, 1 = 1, 3 = 1, and z3 = 1, solve the following

. system of equations by the Newton-Raphson method.

11
3
Ty — 2123+ Toxzg = 6

2 2
Ty — 25+ a:%
129 + x% — 3x3
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Taking partial derivatives of the above functions results in the Jacobian matrix

2:171 -—21,’2 2:123
J = o Ty + 272 -3
1—2a3 x3 -1+ To

The following statements solve the given system of equations by the Newton-
Raphson algorithm

Dx=[10;10;10]; %Change in variable is set to a high value

x=[1; 1; 1]; 7% Initial estimate
c=[11; 3; 6];

iter = 0; % Iteration counter
while max(abs(Dx))>=.0001 & iter<10;JTest for convergence
iter = iter + 1 % No. of iterations
F = [x(1)"2-x(2)"2+x(3)"2 % Functions

x(1)*x(2)+x(2) "2-3*x(3)
x(1)-x(1)*x(3)+x(2)*x(3)];

DC =C - F % Residuals
J = [2*xx(1) -2*x(2) 2xx(3) % Jacobian matrix
x(2) x(1)+2%xx(2) -3
1-x(3) x(3) -x(1)+x(2)]
Dx=J\DC #Change in variable
x=x+Dx % Successive solution
end

The program results for the first iteration are

DC = J =
10 ' 2 -2 2
4 1 3 -3
5 0 1 0
Dx = X =
4.750 5.750
5.000 6.000
5.250 6.250

After six iterations, the solution converges to ;3 = 2.0000, zo = 3.0000, and
z3 = 4.0000. »

Newton’s method has the advantage of converging quadratically when we
are near a root. However, more functional evaluations are required during each
iteration. A very important limitation is that it does not generally converge to a
solution from an arbitrary starting point.
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6.4 POWER FLOW SOLUTION

Power flow studies, commonly known as load flow, form an important part of
power system analysis. They are necessary for planning, economic scheduling, and
control of an existing system as well as planning its future expansion. The problem
consists of determining the magnitudes and phase angle of voltages at each bus and
active and reactive power flow in each line.

In solving a power flow problem, the system is assumed to be operating under
balanced conditions and a single-phase model is used. Four quantities are associ-
ated with each bus. These are voltage magnitude |V, phase angle 4, real power P,
and reactive power Q. The system buses are generally classified into three types.

Slack bus One bus, known as slack or swing bus, is taken as reference where the
magnitude and phase angle of the voltage are specified. This bus makes up
the difference between the scheduled loads and generated power that are
caused by the losses in the network.

Load buses At these buses the active and reactive powers are specified. The mag-
nitude and the phase angle of the bus voltages are unknown. These buses are
called P-Q buses.

Regulated buses These buses are the generator buses. They are also known as
voltage-controlled buses. At these buses, the real power and voltage magni-
tude are specified. The phase angles of the voltages and the reactive power
are to be determined. The limits on the value of the reactive power are also
specified. These buses are called P-V buses.

64.1 POWER FLOW EQUATION

Consider a typical bus of a power system network as shown in Figure 6.7. Trans-
mission lines are represented by their equivalent 7 models where impedances have
been converted to per unit admittances on a common MVA base.

Application of KCL to this bus results in

Li=yioVi+ya(Vi = V1) +42(Vi = Vo) + -+ 4+ yin(Vi = V)
=(yio+yan+yiz+ - +yin)Vi —ynVi —yisVo — - - — YinVn (6.23)

or

n n
L=Vi) vij =Y iV j#i (6.24)
=0 7=1
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Vi 1%}
Yi1 {
Yi2 ‘{2
!
i
Yin V;n
|
0
FIGURE 6.7
A typical bus of the power system.
The real and reactive power at bus 7 is
P+ jQi = Vil} (6.25)
or
P —jQi
L[ =21 _<% 6.26
i v (6.26)
Substituting for I; in (6.24) yields
P, — jQ; " ~ .
"Z‘T,_*_—z=vizyij‘zyijvj J# (627)
i §=0 j=1

From the above relation, the mathematical formulation of the power flow
problem results in a system of algebraic nonlinear equations which must be solved
by iterative techniques.

6.5 GAUSS-SEIDEL POWER FLOW SOLUTION

In the power flow study, it is necessary to solve the set of nonlinear equations
represented by (6.27) for two unknown variables at each node. In the Gauss-Seidel
method (6.27) is solved for V;, and the iterative sequence becomes

Pt (k)
oy S,
V. = i
t 2 Yij

j# (6.28)
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where y;; shown in lowercase letters is the actual admittance in per unit. Pfch
and Q°" are the net real and reactive powers expressed in per unit. In writing the
KCL, current entering bus ¢ was assumed positive. Thus, for buses where real and
reactive powers are injected into the bus, such as generator buses, Pfc" and Q:ch
have positive values. For load buses where real and reactive powers are flowing
away from the bus, P5°* and Q$°* have negative values. If (6.27) is solved for P;
and Q);, we have

n n
P = gy @ ¥ v — > wi Vi) j#FL (629)
=0 =1
(k+1) ) 1 (k) z (k)
QF T =SV Xw - 2wV Y A (630)
j=0 j=1

The power flow equation is usually expressed in terms of the elements of
the bus admittance matrix. Since the off-diagonal elements of the bus admittance
matrix Y,s, shown by uppercase letters, are Yi; = —y;;, and the diagonal elements
are Yi; = > 5, (6.28) becomes

P:sch_- sch k
__;:ﬂz__ — Zj#i Y;]‘/]( )

w+ny _ v ®
v, = v 6.31)
and
n
F,i(k+1) _ %{V}*(k) [V,-(k)Yii + Z Yijvj(k)]} j#i 6.32)
>
n
A=V vVl A 63)
i=1
i

Y;; includes the admittance to ground of line charging susceptance and any other
fixed admittance to ground. In Section 6.7, a model is presented for transformers
containing off-nominal ratio, which includes the effect of transformer tap setting.
Since both components of voltage are specified for the slack bus, there are
2(n — 1) equations which must be solved by an iterative method. Under normal
operating conditions, the voltage magnitude of buses are in the neighborhood of
1.0 per unit or close to the voltage magnitude of the slack bus. Voltage magnitude at
load buses are somewhat lower than the slack bus value, depending on the reactive
power demand, whereas the scheduled voltage at the generator buses are somewhat
higher. Also, the phase angle of the load buses are below the reference angle in
accordance to the real power demand, whereas the phase angle of the generator




6.5. GAUSS-SEIDEL POWER FLOW SOLUTION 211

buses may be above the reference value depending on the amount of real power
flowing into the bus. Thus, for the Gauss-Seidel method, an initial voltage estimate
of 1.0 + 70.0 for unknown voltages is satisfactory, and the converged solution
correlates with the actual operating states.

For P-Q buses, the real and reactive powers Pf'c" and Qf“h are known. Start-
ing with an initial estimate, (6.31) is solved for the real and imaginary components
of voltage. For the voltage-controlled buses (P-V buses) where P°* and |V;| are

specified, first (6.33) is solved for ngﬂ), and then is used in (6.31) to solve for
Vi(k“). However, since |V;| is specified, only the imaginary part of Vi(kﬂ) is re-
tained, and its real part is selected in order to satisfy

()2 4 (FEH)2 = W2 (6.34)
or

B = v — (£ (6.35)
where e(k+l) and f; +1) are the real and imaginary components of the voltage
Vi(k“) in the iterative sequence.

The rate of convergence is increased by applying an acceleration factor to the
approximate solution obtained from each iteration.

Vi(k+1) _ Vi(k) + a(V(k) ,(k)) (6.36)

1 cal

where o is the acceleration factor. Its value depends upon the system. The range of
1.3 to 1.7 is found to be satisfactory for typical systems.

The updated voltages immediately replace the previous values in the solution
of the subsequent equations. The process is continued until changes in the real and
imaginary components of bus voltages between successive iterations are within a
specified accuracy, i.e.,

legkﬂ) - egk)l <e
1 1 —_
1D — 5B < e (6.37)

For the power mismatch to be reasonably small and acceptable, a very tight tol-
erance must be specified on both components of the voltage. A voltage accuracy
in the range of 0.00001 to 0.00005 pu is satisfactory. In practice, the method for
determining the completion of a solution is based on an accuracy index set up on
the power mismatch. The iteration continues until the magnitude of the largest ele-
ment in the AP and AQ columns is less than the specified value. A typlcal power
mismatch accuracy is 0.001 pu

Once a solution is converged, the net real and reactive powers at the slack bus
are computed from (6.32) and (6.33).
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6.6 LINE FLOWS AND LOSSES

After the iterative solution of bus voltages, the next step is the computation of line
flows and line losses. Consider the line connecting the two buses ¢ and j in Figure
6.8. The line current I;;, measured at bus 5 and defined positive in the direction

V.
P L

I Ijo

Yio Yo

FIGURE 6.8
Transmission line model for calculating line flows.

1 — j is given by
Lij = I+ Lip = yi5(Vi = V}) + yio Vi (6.38)

Similarly, the line current I 4i measured at bus j and defined positive in the direction
J — tis given by
Lji = I + Lio = y;5(V; — Vi) + y;0V; (6.39)
The complex powers S;; from bus ¢ to § and S;i from bus j to % are
Sij = ViIj; (6.40)
Sji = V;I5; (6.41)

The power loss in line i — j is the algebraic sum of the power flows determined
from (6.40) and (6.41), i.e.,

Spij = Sij + Sji (6.42)

The power flow solution by the Gauss-Seidel method is demonstrated in the
following two examples.

Example 6.7 .

Figure 6.9 shows the one-line diagram of a simple three-bus power system with
generation at bus 1. The magnitude of voltage at bus 1 is adjusted to 1.05 per
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unit. The scheduled loads at buses 2 and 3 are as marked on the diagram. Line
impedances are marked in per unit on a 100-MVA base and the line charging sus-
ceptances are neglected.

1 0.02 + j0.04 2
256.6
O o
0.01 + 50.03 0.0125 + 70.025 |—— 110.2
Mvar
Slack Bus 3
Vi = 1.0520°
138.6 45.2
MW Mvar
FIGURE 6.9

One-line diagram of Example 6.7 (impedances in pu on 100-MVA base).

(a) Using the Gauss-Seidel method, determine the phasor values of the voltage at
the load buses 2 and 3 (P-Q buses) accurate to four decimal places.

(b) Find the slack bus real and reactive power.

(c) Determine the line flows and line losses. Construct a power flow diagram show-
ing the direction of line flow.

(a) Line impedances are converted to admittances
1

~ 0.02 +40.04

Similarly, y13 = 10 — 730 and yy3 = 16 — j32. The admittances are marked on the

network shown in Figure 6.10.
At the P-Q buses, the complex loads expressed in per units are

(2566 +4110.2) _

Y12 =10 — 520

S5ch = o = —2.566 — j1.102 pu
Ssch — —(138'6130745'2) — ~1.386 — j0.452 pu

Since the actual admittances are readily available in Figure 6.10, for hand calcu-
lation, we use (6.28). Bus 1 is taken as reference bus (slack bus). Starting from
an initial estimate of V") = 1.0 + j0.0 and V”) = 1.0 + j0.0, V, and V are
computed from (6.28) as follows

Psch__' ach
—z—v-;(]a?z— +y12V1 + y23V3(0)
2

Y12 + Y23
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1 y12 = 10 — 520 2
> 256.6
: MW
y13 = 10 — 530 y2s =16 — j32 [~ 1102
Myvar
Slack Bus 3
Vi = 1.0520°
138.6 45.2
MW Mvar
FIGURE 6.10

One-line diagram of Example 6.7 (admittances in pu on 100-MVA base).

——;—2-5163;:3-102 + (10 — 520)(1.05 + j0) + (16 — j32)(1.0 + j0)

(26 — j52)
= 0.9825 — 50.0310
and
sch _ s ysch
ST 4 s + gV
yo o %
Y13 + Y23 )
=2 4 (10 — 530)(1.05 + j0) + (16 — 532)(0.9825 — j0.0310)
= (26 — j62)

= 1.0011 ~ 50.0353
For the second iteration we have
—2.566+41.102 . . . .
o Tosasirbsaie + (10 — j20)(1.05 + j0) + (16 — 532)(1.0011 — 50.0353)
) =

(26 — j52)
= 0.9816 — 50.0520
and
o _ Totatses + (10 — 730)(1.05 + j0) + (16 — j32)(0.9816 — j0.052)
8 - (26 — j62)

= 1.0008 — j0.0459

The process is continued and a solution is converged with an accuracy of 5 x 10~°
per unit in seven iterations as given below.

v = 0.9808 — j0.0578 V4 = 1.0004 — §0.0488




6.6. LINEFLOWS ANDLOSSES 215

V" = 0.9803 — j0.0594 V34 = 1.0002 - j0.0497
v = 0.9801 — j0.0598 V) = 1.0001 — 50.0499
v - 0,98/01 — j0.0599 V¥ = 1.0000 — 50.0500
v{" = 0.9800 — ;0.0600 V" = 1.0000 — j0.0500

The final solution is

V2 = 0.9800 — ;0.0600 = 0.98183/—3.5035° pu
V3 = 1.0000 — 50.0500 = 1.00125/—2.8624° pu

(b) With the knowledge of all bus voltages, the slack bus power is obtained from
(6.27)

Py - 3Q1 = Vi'Vi(y12 + 113) — (112V2 + 413V3)]
= 1.05[1.05(20 — j50) — (10 — j20)(0.98 — 5.06) —
(10 — 530)(1.0 — 70.05)]
= 4.095 — 71.890

or the slack bus real and reactive powers are P; = 4.095 pu = 409.5 MW and
Q1 = 1.890 pu = 189 Mvar.

(c) To find the line flows, first the line currents are computed. With line charging
capacitors neglected, the line currents are )

ha = y12(Vi = V) = (10 — j20)[(1.05 + jO) — (0.98 — j0.06)] = 1.9 — j0.8
Iy =—I1p=—-19+ 408

Iz = y13(Vi — V3) = (10 — 530)[(1.05 + jO) — (1.0 — j0.05)] = 2.0 — 51.0
Isy = —Ii3 = —2.0+ j1.0

g = ya3(Va — V3) = (16 — 532)[(0.98 — j0.06) — (1 — j0.05)] = —.64 + j.48
Isp = —Ip3 = 0.64 — §0.48

The line flows are

S12 = ViI}y = (1.05 + j0.0)(L.9 + j0.8) = 1.995 + j0.84 pu
=199.5 MW + j84.0 Mvar

Sg1 = VaI}; = (0.98 — j0.06)(—1.9 — j0.8) = —1.91 — j0.67 pu
= —191.0 MW — j67.0 Mvar

Sia = ViIt; = (1.05 + j0.0)(2.0 + j1.0) = 2.1 + 51.05 pu
=210.0 MW + j105.0 Mvar
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S31 = VaI3; = (1.0 — 50.05)(—2.0 — 51.0) = —2.05 — j0.90 pu

= —205.0 MW — 590.0 Mvar

Sz3 = Val33 = (0.98 — j0.06)(~0.656 + j0.48) = —0.656 — j0.432 pu

= —65.6 MW — j43.2 Mvar

S32 = VI35 = (1.0 — 50.05)(0.64 + j0.48) = 0.664 + 50.448 pu

=66.4 MW + j44.8 Mvar
and the line losses are

SL12 = S12 + 821 = 85 MW + 717.0 Mvar
St 13 = S13+ 531 = 5.0 MW + 715.0 Mvar
Sr 23 = Sog + S30 = 0.8 MW + 71.60 Mvar

The power flow diagram is shown in Figure 6.11, where real power direction is
indicated by — and the reactive power direction is indicated by . The values

within parentheses are the real and reactive losses in the line.

1 199.5 191 2
409.5 (85)
- } (17.0) — >
C 84.0 67.0 256.6
: 210.0 (5) 205 . 66.4 (0.8) 65.6
189 | (15) - R (1.6) > 110.2
105.0 90.0 44 .8 43.2
T 7
138.6 45.2
FIGURE 6.11

Power flow diagram of Example 6.7 (powers in MW and Myvar).

Example 6.8

Figure 6.12 shows the one-line diagram of a simple three-bus power system with
generators at buses 1 and 3. The magnitude of voltage at bus 1 is adjusted to 1.05
pu. Voltage magnitude at bus 3 is fixed at 1.04 pu with a real power generation
of 200 MW. A load consisting of 400 MW and 250 Muvar is taken from bus 2.
Line impedances are marked in per unit on a 100 MVA base, and the line charging
susceptances are neglected. Obtain the power flow solution by the Gauss-Seidel

method including line flows and line losses.
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0.02 + j0.04

—> 400

) il

0.01 + 50.03 0.0125 + 50.025 |——- 250
Myvar
Slack Bus 3
Vi = 1.05/0°
200 | V3 |=1.04
MW

FIGURE 6.12
One-line diagram of Example 6.8 (impedances in pu on 100-MVA base).

Line impedanc‘\as converted to admittances are y19 = 10—320, y13 = 10—530
and yo3 = 16 — j32. The load and generation expressed in per units are

4 j2
S.;ch — _(_09_1__*_(-)8—50) =—4.0-352.5 pu
2
P3SCh' = T?% = 2.0 pu

Bus 1 is taken as the reference bus (slack bus). Starting from an initial estimate of
Vi® = 1.0+ j0.0 and V{”) = 1.04 + 0.0, V4 and V3 are computed from (6.28).

Psch__stch

ot y12V1 + yst:;(O)
2

y
Y12+ Y3

=EHZE 4 (10 — j20)(1.05 + 50) + (16 — j32)(1.04 + 50)
B (26 — j52)

= 0.97462 — ;0.042307

Bus 3 is a regulated bus where voltage magnitude and real power are specified. For
the voltage-controlled bus, first the reactive power is computed from (6.30)

le) = ‘%{V:s*w) [Va(o) (v13 + y23) — y13V1 — y23V2(1)]}
= ~S{(1.04 — j0)[(1.04 + j0)(26 — 562) — (10 — 730)(1.05 + j0) —
(16 — j32)(0.97462 — 0.042307)]}
=1.16
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The value of le) is used as Q5" for the computation of voltage at bus 3. The
complex voltage at bus 3, denoted by Vc(31), is calculated
Psch__stch

1
o— +yisV1 + y23V2( )
V3

v
e Y13 + Y23

Aiess + (10 — 530)(1.05 + 50) + (16 — 532)(0.97462 — 50.042307)
(26 — j62)

= 1.03783 — j0.005170

Since |V3] is held constant at 1.04 pu, only the imaginary part of Vc(;) is retained,

ie, f{ = —0.005170, and its real part is obtained from

e = 1/(1.04)% — (0.005170)2 = 1.039987
Thus
Vi = 1.039987 — §0.005170

For the second iteration, we have

Psch __stch

V2(2) — Vs Y

+ y12V1 + yzaVé(l)

Y12 + Y23
sy + (10 — 520)(1.05) + (16 — j32)(1.039987 + 50.005170)

(26 — j52)
= 0.971057 — j0.043432

QY = SV Vi (g1 + y23) — y13Vi — yas VD))
= —S{(1.039987 + j0.005170)[(1.039987 — 50.005170)(26 — j62) —
(10 — 530)(1.05 -+ j0) — (16 — 532)(0.971057 — 50.043432)]}
= 1.38796

Psch _anch

2
oo tyisVi + y23V2( )
Vs

v _
e Y13 + Ya3

_ Tososronosr + (10 — 530)(1.05) + (16 — j32)(.971057 — 7.043432)
(26 — j62)

= 1.03908 — ;0.00730
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Since |V3| is held constant at 1.04 pu, only the imaginary part of Vc(32) is retained,

(2) _
3

i-e, = —0.00730, and its real part is obtained from

e = 1/(1.04)2 - (0.00730)2 = 1.039974
or
V{2 = 1.039974 — §0.00730

The process is continued and a solution is converged with an accuracy of 5 x 10>
pu in seven iterations as given below.

v = 097073 - j0.04479 Q) =1.42904 V¥ =1.03996 — j0.00833
Vi =0.97065 — j0.04533 QY =1.44833  V{* =1.03996 — j0.00873
v = 0.97062 — j0.04555 QY =1.45621 V) = 1.03996 — 50.00893
v{® = 0.97061 — j0.04565 QP =1.45947 V¥ =1.03996 — j0.00900
v = 0.97061 — j0.04569 Q' =1.46082 V{" = 1.03996 — j0.00903

The final solution is

Vo = 0.97168/—2.6948° pu

S3 = 2.0+ j1.4617 pu

Vs =1.04/—-.498° pu

S1 =2.1842 4 j1.4085 pu
N
Line flows and line losses are computed as in Example 6.7, and the results ex-
pressed in MW and Myvar are

Sip = 179.36 + j118.734 Sp; = —170.97 — §101.947 Sr12 = 8.39 + j16.79
Si3 = 39.06 + j22.118  S3; = —38.88 — j 21.569 Sp13 = 0.18 + j0.548
Spg = —229.03 — j148.05 Ssp = 238.88 + j167.746  Spo3 = 9.85 + j19.69

The power flow diagram is shown in Figure 6.13, where real power direction
is indicated by — and the reactive power direction is indicated by +—. The values
within parentheses are the real and reactive losses in the line.
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ysang ] 179.362 (8.309) 170.968
22 = (16.787) —— —
118.734 101.947 | 400
C{ 39061 | 1o0) 38878 238878 g g47) 229032
140852 —(518) —— —> (19.693)—— | 250
22.118 21.569 167.746 148.053
i
200 146.177
FIGURE 6.13

Power flow diagram of Example 6.8 (powers in MW and Mvar).

6.7 TAP CHANGING TRANSFORMERS

In Section 2.6 it was shown that the flow of real power along a transmission line is
determined by the angle difference of the terminal voltages, and the flow of reactive
power is determined mainly by the magnitude difference of terminal voltages. Real
and reactive powers can be controlled by use of tap changing transformers and
regulating transformers.

In a tap changing transformer, when the ratio is at the nominal value, the
transformer is represented by a series admittance v, in per unit. With off-nominal
ratio, the per unit admittance is different from both sides of the transformer, and the
admittance must be modified to include the effect of the off-nominal ratio. Consider
a transformer with admittance y; in series with an ideal transformer representing
the off-nominal tap ratio 1:a as shown in Figure 6.14. y¢ is the admittance in per
unit based on the nominal turn ratio and a is the per unit off-nominal tap position
allowing for small adjustment in voltage of usually 10 percent. In the case of
phase shifting transformers, a is a complex number. Consider a fictitious bus z
between the turn ratio and admittance of the transformer. Since the complex power
on either side of the ideal transformer is the same, it follows that if the voltage goes
through a positive phase angle shift, the current will go through a negative phase
angle shift. Thus, for the assumed direction of currents, we have

1
Ve = aVj (6.43)
I, = -a*l; (6.44)
The current I; is given by

Ii = yt(V'i - V:c)
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.Y
Vi I Yt Ve U
l:a
FIGURE 6.14
Transformer with tap setting ratio a:1
Substituting for V,, we have
L=y - 2v; (6.45)
Also, from (6.44) we have
1
I 7 = ——; i
substituting for I; from (6.45) we have
_ Yy, Yy
L=-gVit oY (6.46)

writing (6.45) and (6.46) in matrix form results in

L1_[w —%][w ] ‘
For the case when a is real, the 7 model shown in Figure 6.15 represents the ad-
mittance matrix in (6.47). In the 7 model, the left side corresponds to the non-tap
side and the right side corresponds to the tap side of the transformer.

Non-tap side Tap side

yt/a

FIGURE 6.15
Equivalent circuit for a tap changing transformer.
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6.8 POWER FLOW PROGRAMS

Several computer programs have been developed for the power flow solution of
practical systems. Each method of solution consists of four programs. The pro-
gram for the Gauss-Seidel method is Ifgauss, which is preceded by Ifybus, and is
followed by busout and lineflow. Programs Ifybus, busout, and lineflow are de-
signed to be used with two more power flow programs. These are Ifnewton for
the Newton-Raphson method and decouple for the fast decoupled method. The
following is a brief description of the programs used in the Gauss-Seidel method.

Hybus This program requires the line and transformer parameters and transformer
tap settings specified in the input file named linedata. It converts impedances
to admittances and obtains the bus admittance matrix. The program is de-
signed to handle parallel lines.

Ifgauss This program obtains the power flow solution by the Gauss-Seidel method
and requires the files named busdata and linedata. It is designed for the di-
rect use of load and generation in MW and Mvar, bus voltages in per unit,
and angle in degrees. Loads and generation are converted to per unit quanti-
ties on the base MVA selected. A provision is made to maintain the generator
reactive power of the voltage-controlled buses within their specified limits.
The violation of reactive power limit may occur if the specified voltage is
either too high or too low. After a few iterations (10" iteration in the Gauss
method), the var calculated at the generator buses are examined. If a limit is
reached, the voltage magnitude is adjusted in steps of 0.5 percent up to +5
percent to bring the var demand within the specified limits.

busout This program produces the bus output result in a tabulated form. The bus
output result includes the voltage magnitude and angle, real and reactive
power of generators and loads, and the shunt capacitor/reactor Mvar. Total
generation and total load are also included as outlined in the sample case.

lineflow This program prepares the line output data. It is designed to display the
active and reactive power flow entering the line terminals and line losses as
well as the net power at each bus. Also included are the total real and reactive
losses in the system. The output of this portion is also shown in the sample
case.
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6.9 DATA PREPARATION

In order to perform a power flow analysis by the Gauss-Seidel method in the MAT-
LAB environment, the following variables must be defined: power system base
MVA, power mismatch accuracy, acceleration factor, and maximum number of it-
erations. The name (in lowercase letters) reserved for these variables are basemva,
accuracy, accel, and maxiter, respectively. Typical values are as follows:

basemva = 100; accuracy = 0.001;
accel = 1.6; maxiter = 80;

The initial step in the preparation of input file is the numbering of each bus. Buses
are numbered sequentially. Although the numbers are sequentially assigned, the
buses need not be entered in sequence. In addition, the following data files are re-
quired.

BUS DATA FILE - busdata The format for the bus entry is chosen to facili-
tate the required data for each bus in a single row. The information required must be
included in a matrix called busdata. Column 1 is the bus number. Column 2 con-
tains the bus code. Columns 3 and 4 are voltage magnitude in per unit and phase
angle in degrees. Columns 5 and 6 are load MW and Mvar. Column 7 through 10
are MW, Mvar, minimum Mvar and maximum Mvar of generation, in that order.
The last column is the injected Mvar of shunt capacitors. The bus code entered in
column 2 is used for identifying load, voltage-controlled, and slack buses as out-
lined below:

1 This code is used for the slack bus. The only necessary information for this bus
is the voltage magnitude and its phase angle.

0 This code is used for load buses. The loads are entered positive in megawatts
and megavars. For this bus, initial voltage estimate must be specified. This is
usually 1 and 0 for voltage magnitude and phase angle, respectively. If volt-
age magnitude and phase angle for this type of bus are specified, they will
be taken as the initial starting voltage for that bus instead of a flat start of 1
and 0.

2 This code is used for the voltage-controlled buses. For this bus, voltage magni-
tude, real power generation in megawatts, and the minimum and maximum
limits of the megavar demand must be specified.

LINE DATA FILE - linedata Lines are identified by the node-pair method. The
information required must be included in a matrix called linedata. Columns 1 and
2 are the line bus numbers. Columns 3 through 5 contain the line resistance, reac-
tance, and one-half of the total line charging susceptance in per unit on the specified
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MVA base. The last column is for the transformer tap setting; for lines, 1 must be
entered in this column. The lines may be entered in any sequence or order with
the only restriction being that if the entry is a transformer, the left bus number is
assumed to be the tap side of the transformer.

The IEEE 30 bus system is used to demonstrate the data preparation and the
use of the power flow programs by the Gauss-Seidel method.

Example 6.9

Figure 6.16 is part of the American Electric Power Service Corporation network
which is being made available to the electric utility industry as a standard test case
for evaluating various analytical methods and computer programs for the solution
of power system problems. Use the Ifgauss program to obtain the power solution
by the Gauss-Seidel method. Bus 1 is taken as the slack bus with its voltage ad-
Jjusted to 1.06£0° pu. The data for the voltage-controlled buses is

Regulated Bus Data
Bus Voltage Min. Mvar Max. Mvar
No. Magnitude Capacity  Capacity

2 1.043 -40 50
5 1.010 -40 40
8 1.010 -10 40
11 1.082 -6 24

13 1.071 -6 24

Transformer tap setting are given in the table below. The left bus number is as-
sumed to be the tap side of the transformer.

Transformer Data
Transformer Tap Setting
Designation pu

4-12 0.932
6- 9 0.978
6-10 0.969
28 - 27 0.968

The data for the injected Q due to shunt capacitors is

Injected Q due to Capacitors
Bus No. Mvar

10 19

24 4.3
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Three Winding Transformer
Equivalents

13

30

T23

245

27

29
é‘zg
—26

G: Generators
8 C: Synchronous condensers

FIGURE 6.16
30-bus IEEE sample system.
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Generation and loads are as given in the data prepared for use in the MATLAB
environment in the matrix defined as busdata. Code 0, code 1, and code 2 are used
for the load buses, the slack bus and the voltage-controlled buses, respectively.
Values for basemva, accuracy, accel and maxiter must be specified. Line data are
as given in the matrix called linedata. The last column of this data must contain 1
for lines, or the tap setting values for transformers with off-nominal turn ratio. The
control commands required are Ifybus, Ifgauss and lineflow. A diary command
may be used to save the output to the specified file name. The power flow data and
the commands required are as follows.

clear h clears all variables from workspace.
basemva = 100; accuracy = 0.001; accel = 1.8; maxiter = 100;
%  IEEE 30-BUS TEST SYSTEM (American Electric Power)

% Bus Bus Voltage Angle --Load-- —--Generator---Injected
% No code Mag. Degree MW Mvar MW Mvar Qmin Qmax Mvar
busdata=[1 1 1.06 0 0.0 0.0 0.0 0.0 0 O 0
2 2 1.043 0 21.70 12.7 40.0 0.0 -40 50 0
3 0 1.0 0 2.4 1.2 0.0 0.0 0 O 0
4 0 1.06 0 7.6 1.6 0.0 0.0 0 0O 0
5 2 1.01 0 94.2 19.0 0.0 0.0 -40 40 0
6 0 1.0 0 0.0 0.0 0.0 0.0 0 o0 0
7 0 1.0 0 22.8 10.9 0.0 0.0 0 o0 0
8 2 1.00 0 30.0 30.0 0.0 0.0 -10 40 0
9 0 1.0 0 0.0 0.0 0.0 0.0 0 O 0
10 0 1.0 0 5.8 2.0 0.0 0.0 0 O 19
11 2 1.082 0 0.0 0.0 0.0 0.0 -6 24 0
12 0 1.0 0 11.2 7.5 0 0 0 o 0
13 2 1.071 0 0.0 0.0 0 0 -6 24 0
14 0 1.0 0 6.2 1.6 0 0 0 o 0
15 0 1.0 0 8.2 2.5 0 0 0 0 0
16 0 1.0 0 3.5 1.8 0 0 0 o0 0
17 0 1.0 0 9.0 5.8 0 0 0 o 0
18 0 1.0 0 3.2 0.9 0 0 0 o 0
19 0 1.0 0 9.5 3.4 0 0 0 o0 0
20 0 1.0 0 2.2 0.7 0 0 0 o0 0
21 0 1.0 0 17.5 11.2 0 0 0 o 0
22 0 1.0 0 0.0 0.0 0 0 0 o0 0
23 0 1.0 0 3.2 1.6 0 0 0 o0 0
24 0 1.0 0 8.7 6.7 0 0 0 0 4.3
25 0 1.0 0 0.0 0.0 0 0 0 o 0
26 0 1.0 0 3.5 2.3 0 0 0 o0 0
27 0 1.0 0 0.0 0.0 0 0 0 0 0
28 0 1.0 0 0.0 0.0 0 0 0 o0 0
29 0 1.0 0 2.4 0.9 0 0 0 o 0
30 0 1.0 0 10.6 1.9 0 0 0 0 0];
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% Line Data

h
% Bus bus R X 1/2 B 1 for Line code or
% nl nr pu pu pu tap setting value
linedata=[1 2 0.0192 0.0575 0.02640 1
1 3 0.0452 0.185b2 0.02040 1
2 4 0.0570 0.1737 0.01840 1
3 4 0.0132 0.0379 0.00420 1
2 5 0.0472 0.1983 0.02090 1
2 6 0.0581 0.1763 0.01870 1
4 6 0.0119 0.0414 0.00450 1
5 7 0.0460 0.1160 0.01020 1
6 7 0.0267 0.0820 0.00850 1
6 8 0.0120 0.0420 0.00450 1
6 9 0.0 0.2080 0.0 0.978
6 10 0.0 0.5560 0.0 0.969
9 11 0.0 0.2080 0.0 1
9 10 0.0 0.1100 0.0 1
4 12 0.0 0.2560 0.0 0.932
12 13 0.0 0.1400 0.0 1
12 14 0.1231 0.2559 0.0 1
12 15 0.0662 0.1304 0.0 1
12 16 0.0945 0.1987 0.0 1
14 15 0.2210 0.1997 0.0 1
16 17 0.0824 0.1923 0.0 1
15 18 0.1073 0.2185 0.0 1
18 19 0.0639 0.1292 0.0 1
19 20 0.0340 0.0680 0.0 1
10 20 0.0936 0.2090 0.0 1
10 17 0.0324 0.0845 0.0 1
10 21 0.0348 0.0749 0.0 1
10 22 0.0727  0.1499 0.0 1
21 22 0.0116 0.0236 0.0 1
15 23 0.1000 0.2020 0.0 1
22 24 0.1150 0.1790 0.0 1
23 24 0.1320 0.2700 0.0 1
24 25 0.1885 0.3292 0.0 1
26 26 0.2544 0.3800 0.0 1
25 27 0.1093  0.2087 0.0 1
28 27 0.0000 0.3960 0.0 0.968
27 29 0.2198 0.4153 0.0 1
27 30 0.3202 0.6027 0.0 1
29 30 0.2399 0.4533 0.0 1
8 28 0.0636 0.2000 0.0214 1
6 28 0.0169 0.0599 0.0865 1];
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h

1lfybus % Forms the bus admittance matrix
lfgauss % Power flow solution by Gauss-Seidel method
busout 4 Prints the power flow solution on the screen

lineflow 7 Computes and displays the line flow and losses

The Ifgauss, busout and the lineflow produce the following tabulated results.

Power Flow Solution by Gauss-Seidel Method
Maximum Power mismatch = 0.000951884
No. of iterations = 34

Bus Voltage Angle ~ ---—-—- Load----- --Generation-- Injected
No. Mag. Degree MW Mvar MW Mvar Mvar
1 1.060 0.000 0.000 0.000 260.950 -17.010 0.00
2 1.043 -5.496 21.700 12.700 40.000 48.826 0.00
3 1.022 -8.002 2.400 1.200 0.000 0.000 0.00
4 1.013 -9.659 7.600 1.600 0.000 0.000 0.00
5 1.010 -14.380 94.200 19.000 0.000 35.995 0.00
6 1.012 -11.396 0.000 0.000 0.000 0.000 0.00
7 1.003 -13.149 22.800 10.900 0.000 0.000 0.00
8 1.010 -12.114 30.000 30.000 0.000 30.759 0.00
9 1.051 -14.432 0.000 0.000 0.000 0.000 0.00
10 1.044 -16.024 5.800 2.000 0.000 0.000 19.00
11 1.082 -14.432 0.000 0.000 0.000 16.113 0.00
12 1.057 -15.301 11.200 7.500 0.000 0.000 0.00
13 1.071 -15.300 0.000 0.000 0.000 10.406 0.00
14 1.043 -16.190 6.200 1.600 0.000 0.000 0.00
15 1.038 -16.276 8.200 2.500 0.000 0.000 0.00
16 1.045 -15.879 3.500 1.800 0.000 0.000 0.00
17 1.039 -16.187 9.000 5.800 0.000 0.000 0.00
18 1.028 -16.881 3.200 0.900 0.000 0.000 0.00
19 1.025 -17.049 9.500 3.400 0.000 0.000 0.00
20 1.029 -16.851 2.200 0.700 0.000 0.000 0.00
21 1.032 -16.468 17.500 11.200 0.000 0.000 0.00
22 1.033 -16.455 0.000 0.000 0.000 0.000 0.00
23 1.027 -16.660 3.200 1.600 0.000 0.000 0.00
24 1.022 -16.829 8.700 6.700 0.000 0.000 4.30
25 1.019 -16.423 0.000 0.000 0.000 0.000 0.00
26 1.001 -16.835 3.500 2.300 0.000 0.000 0.00
27 1.026 -15.913 0.000 0.000 0.000 0.000 0.00
28 1.011 -12.056 0.000 0.000 0.000 0.000 0.00
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29 1.006 -17.133 2.400 0.900 0.000 0.000 0.00
30 0.994 -18.0i6 10.600 1.900 0.000 0.000 0.00

Total 283.400 126.200 300.950 125.089 23.30

Line Flow and Losses

--Line-- Power at bus & line flow --Line loss-- Transformer
from to MW Mvar MVA MW Mvar tap
1 260.950 -17.010 261.504

2 177.743 -22.140 179.117 5.461 10.517
3 83.197 5.125 83.354 2.807 7.079

2 18.300 36.126  40.497
1 -172.282 32.657 175.350 5.461 10.517
4 45.702 2.720 45.783 1.106 -0.519
5 82.990 1.704 83.008 2.995 8.178
6 61.906 -0.966 61.913 2.047 2.263
3 -2.400 -1.200 2.683
1 -80.390 1.954 80.414 2.807 7.079
4 78.034 -3.087 78.095 0.771 1.345
4 -7.600 -1.600 7.767
2 -44.596 -3.239 44.713 1.106 -0.519
3 -77.263 4.432 77.390 0.771 1.345
6 70.132 -17.624 72.313 0.605 1.181
12 44.131 14.627 46.492 0.000 4.686 0.932
5 -94.200 @ 16.995 95.721
2 -79.995 6.474 80.256 2.995 8.178
7 -14.210 10.467 17.649 0.151 -1.687
6 0.000 0.000 0.000
2 -59.858 3.229 59.945 2.047 2.263
4 -69.527 18.805 72.026 0.605 1.181
7 37.637 -1.915 37.586 0.368 -0.598
8 .29.534 -3.712 29.766 0.103 -0.558
9 27.687 -7.318 28.638 0.000 1.593 0.978
10 15.828 0.656 15.842 0.000 1.279 0.969
28 18.840 -9.575 21.134 0.060 -13.085
7 -22.800 -10.900 25.272

5 14.361 -12.154 18.814 0.151 -1.687
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-9.000 -5.800 10.707
16 -3.646 -1.413 3.910 0.012 0.027
10 -5.332 -4.355 6.885 0.014 0.037

-3.200 -0.900 3.324
15 -5.970 -1.661 6.197 0.039 0.079
19 2.779 0.787 2.888 0.005 0.010

-9.500 -3.400 10.090
i8 -2.774 -0.777 2.881 0.005 0.010
20 -6.703 -2.675 7.217 0.017 0.034

-2.200 -0.700 2.309
19 6.720 2.709 7.245 0.017 0.034
10 -8.937 -3.389 9.558 0.081 0.180

-17.500 -11.200 20.777
10 -15.613 -9.609 18.333 0.110 0.236
22 -1.849 -1.627 2.463 0.001 0.001

0.000 0.000
10 -7.531 -4.380
21 1.850 1.628
24 5.643 2.795

.000

.712 0.052 0.107
.464 0.001 0.001
.297 0.043 0.067

DN O

-3.200 -1.600 3.578
16 -4.972 -2.900 .756 0.031 0.063
24 1.771 1.282 2.186 0.006 0.012

[¢)]

-8.700 -2.400 9.025
22 -5.601 -2.728 6.230 0.043 0.067
23 -1.766 -1.270 2.174 0.006 0.012
25 -1.322 1.604 2.079 0.008 0.014
0.000 0.000 0.000
24 1.330 -1.590 2.073 0.008 0.014
26 3.520 2.372 4.244 0.044 0.066
4.866 -0.786 4.929 0.026 0.049

27 -

-3.500 -2.300
25 -3.476 -2.306

.188
.171 0.044 0.066

>

0.000 0.000 0.000
25 4.892 0.835 4.963 0.026 0.049
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28 -18.192 -4.152 18.660 ~-0.000 1.310
29 6.178 1.675 6.401 0.086 0.162
30 7.093 1.663 7.286 0.162 0.304

28 0.000 0.000 0.000
27  18.192 5.463 18.994 -0.000 1.310 0.968
8 0.570 -2.003 2.082 0.000 -4.368
6 -18.780 -3.510 19.106 0.060 -13.085

29 -2.400 -0.900
27 -6.093 -1.513
30 3.716 0.601

.563
.278 0.086 0.162
.764 0.034 0.063

woN

30 -10.600 -1.900 10.769
27 -6.932 -1.359 7.064 0.162 0.304
29 -3.683 -0.637 3.722 0.034 0.063
Total loss 17.594 22.233

6.10 NEWTON-RAPHSON POWER FLOW SOLUTION

Because of its quadratic convergence, Newton’s method is mathematically superior
to the Gauss-Seidel method and is less prone to divergence with ill-conditioned
problems. For large power systems, the Newton-Raphson method is found to be
more efficient and practical. The number of iterations required to obtain a solution -
is independent of the system size, but more functional evaluations are required at
each iteration. Since in the power flow problem real power and voltage magnitude
are specified for the voltage-controlled buses, the power flow equation is formu-
lated in polar form. For the typical bus of the power system shown in Figure 6.7,
the current entering bus ¢ is given by (6.24). This equation can be rewritten in terms
of the bus admittance matrix as

n
I =YY,V (6.48)
j=1

In the above equation, j includes bus i. Expressing this equation in polar form, we
have
n
I = 37 IYilIV;l 05 + 8 (6.49)
j=1

The complex power at bus i is

P~ jQ; = VT, (6.50)
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Substituting from (6.49) for I; in (6.50),

n
P, — jQi = \Vil£—8; ) |Yi51IV51£855 + 65 (6.51)
7j=1

Separating the real and imaginary parts,

n
P, =" |Vil|V;1[Yi] cos (85 — & + 65) (6.52)
=1
n
Qi = — X [VillVl[Yis| sin (6:5 — & + &) (6.53)
j=1

Equations (6.52) and (6.53) constitute a set of nonlinear algebraic equations in
terms of the independent variables, voltage magnitude in per unit, and phase angle
in radians. We have two equations for each load bus, given by (6.52) and (6.53), and
one equation for each voltage-controlled bus, given by (6.52). Expanding (6.52)
and (6.53) in Taylor’s series about the initial estimate and neglecting all higher
order terms results in the following set of linear equations.

-Apz(k)' ‘%:f(k) %Df(k) %(k) ﬁ%(kw A&é’“)
AQP N %(k) %(k) %(k) 6%%(@ Ale(k)l
_Aé;“_ -%%;w) %_(.%:,(k_) g&;{(k) %(k) _An}é"’)l_

In the above equation, bus 1 is assumed to be the slack bus. The Jacobian matrix
gives the linearized relationship between small changes in voltage angle A&ék)
and voltage magnitude AIVi(k)I with the small changes in real and reactive power
APi(k) and Ang). Elements of the Jacobian matrix are the partial derivatives of

(6.52) and (6.53), evaluated at A&gk) and A]Vi(k)|. In short form, it can be written
as

AP]_[J1 J2H AS ] (6.5

AQ | | Js Js AlV]
For voltage-controlled buses, the voltage magnitudes are known. Therefore, if m
buses of the system are voltage-controlled, m equations involving AQ and AV
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" and the corresponding columns of the Jacobian matrix are eliminated. Accordingly,
there are n ~ 1 real power constraints and n — 1 — m reactive power constraints,
and the Jacobian matrix is of order (2n — 2 —m) x (2n — 2 — m). Jy is of the
order (n — 1) x (n — 1), Ja is of the order (n — 1) x (n — 1 — m), Jg is of the
order (n —1 —m) x (n— 1), and Jy is of the order (n — 1 — m) X (n — 1—m).

The diagonal and the off-diagonal elements of .J; are

OF;

35 = 2 VillV;IYlsin(8y; — 6 + 0;) (6.55)
g

OF; ) o

85]’ = —IV;”V?'”Y[ZJ‘ISIH(&]' - (51' + (5_7) 7 75 2 (656)

The diagonal and the off-diagonal elements of J5 are

OF;

=T = 2|V;,”Y"l cos 0;; + IV?”Y;J, COS(eij —0; + (5]) 6.57)
oW 2

OP, .,

= [VillYij| cos(6s; — & + &5)  j#1i (6.58)

o|Vjl

The diagonal and the off-diagonal elements of J3 are

0Q;

3?, =>_ IVillV;llYi;] cos(6s; — 8 + 6;) (6.59)
Yog#

Qi .

95, — ~|VillVillYislcos(0i; — 6 +6;) 5 #74 (6.60)
J

The diagonal and the off-diagonal elements of Jy4 are

00 = —2|V;||Y|sin 0;; — Z [VillYsjl sin(0;; — &; + 6;) (6.61)

Vil =

8Q; , o ;
Qi _ ~|VillYijlsin(0;5 — 6; + 6;)  j#i (6.62) i

;| 1

The terms APi(k) and AQEk) are the difference between the scheduled and calcu-
lated values, known as the power residuals, given by

APz(k) — PiSCh _ Pz(k) (6.63)
AQM = Qpen — (6.64)
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The new estimates for bus voltages are

6§k+1) _ 5z(k) + A5§k) (6.65)
VD = O+ am P (6:66)

The procedure for power flow solution by the Newton-Raphson method is as
follows:

1. For load buses, where Pfc" and QfCh are specified, voltage magnitudes and
phase angles are set equal to the slack bus values, or 1.0 and 0.0, i.e., |Vi(o)| =
1.0 and 5§°) = 0.0. For voltage-regulated buses, where |V;| and P7°" are
specified, phase angles are set equal to the slack bus angle, or 0, i.e., 61(0) =0.

2. For load buses, Pi(k) and ng) are calculated from (6.52) and (6.53) and
APi(k) and Ang) are calculated from (6.63) and (6.64).

3. For voltage-controlled buses, Pi(k) and APi(k) are calculated from (6.52) and
(6.63), respectively.

4. The elements of the Jacobian matrix (Jy, Jg, J3, and Jy) are calculated
from (6.55) — (6.62).

5. The linear simultaneous equation (6.54) is solved directly by optimally or-
dered triangular factorization and Gaussian elimination. )

6. The new voltage magnitudes and phase angles are computed from (6.65) and
(6.66).

7. The process is continued until the residuals APi(k) and Ast) are less than
the specified accuracy, i.e.,
IAP, i(k)l Se€
N2 R(E: 6.67)

The power flow solution by the Newton-Raphson method is demonstrated in
the following example.

Example 6.10

Obtain the power flow solution by the Newton-Raphson method for the system of
Example 6.8.



236 6. POWER FLOW ANALYSIS

Line impedances converted to admittances are Y12 = 10 — 520, y13 = 10 — 530,
and yo3 = 16 — j32. This results in the bus admittance matrix

~104 420 26— 552 —16+ ;32
—-10+530 -16+32 26 — j62

20— j50 —10+ 320 —10+ 530
Ybus =

Converting the bus admittance matrix to polar form with angles in radian yields

53.85165/~1.9029  22.36068/2.0344  31.62278/1.8925
Yous = 22.36068/2.0344 58.13777/—-1.1071  35.77709/2.0344
31.62278/1.8925  35.77709/2.0344 67.23095/—1.1737

From (6.52) and (6.53), the expressions for real power at bus 2 and 3 and the
reactive power at bus 2 are

Py = [Va|IV1|[Ya1] cos(021 — b2 + 61) + |Vi2|[Yag| cos By +
[V2||V3[Yas| cos(fa3 — 65 + 83)

Py = |V3]|V1]|Ya1] cos(831 — &5 + 6,) + |V3][V2||Yaz| cos(639 —
83 + 82) + |V¥|[Y33] cos 633

Q2 = —|Va|[V1||Ya1| sin(021 ~ 83 + &1) — [V2||Yaa| sin fgg —
[V2|[V3]|Ya3] sin(B23 — 63 + &)

Elements of the Jacobian matrix are obtained by taking partial derivatives of the
above equations with respect to dy, 83 and [Val.

OP; )
5 = VallVallYau | sin(6a1 — b + &) -+ |Va|Va|Yas]
sin(f23 — 92 + &3)
dP, . .
a5 = —IVallVal|Yas| sin(62s — 85 + &)
003
OP
3v5] = [VillYat] cos(0a = 82 + 81) + 2{Va[Vag] cos 622 +
[V3|[Ya3| cos(623 — 8 + 83) |
P, _
'&Tz = —|V5||V2)|Yaz|sin(f32 — &5 + 82)
2
dP, .
Ty = VllViln s = 6+ 61) + V3 V2l Yoo

sin(032 — 43 + 62)

P
i = |Va||Yao| cos(032 — 85 + &
BIVa] |V3||Y32| cos(632 — 83 2)
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o

22— 1VaVillar)cos(On = B2 + 1) + IVallV Yo
COS(0923 -6+ 63)

o

9Q2 _ —|V2||V3||Yas3| cos(fa3 — 82 + 03)

003

0 ) .

al?/zzl = —|V1”Y21| s1n(021 — 09 + 61) - 2IV2||Y22| sin f9g —

|V5||Yas| sin(@a3 — 2 + d3)

The load and generation expressed in per units are

S5t = _(400+5250) _ 1'03250) —4.0-3j25 pu
200

sch

3 100 =20 pu

The slack bus voltage is V; = 1.05/0 pu, and the bus 3 voltage magnitude is
|[V3| = 1.04 pu. Starting with an initial estimate of |V2(0)| = 1.0, 6(0) = 0.0, and
3 © _ g, 0, the power residuals are computed from (6.63) and (6.64)

AP = pgeh — P = —4.0 - (~1.14) = —2.8600
AP = pseh — plO = 2.0 - (0.5616) = 1.4384
AQY = Qseh — QP = —2.5 — (—2.28) = —0.2200

Evaluating the elements of the Jacobian matrix with the initial estimate, the set of
linear equations in the first iteration becomes

—2.8600 54.28000 —33.28000  24.86000 A5
1.4384 | = | —33.28000  66.04000 —16.64000 A
—0.2200 —27.14000  16.64000  49.72000 | | AV 0>|

Obtaining the solution of the above matrix equation, the new bus voltages in the
first iteration are

A8 = —0.045263 88 = 0+ (—0.045263) = —0.045263
Aa(‘” —0.007718 8§ = 0 + (~0.007718) = —0.007718
A|V2(°)| = —0.026548 VY] =1 + (—0.026548) = 0.97345

Voltage phase angles are in radians. For the second iteration, we have

~0.099218 51.724675 —31.765618  21.302567 | [ As{
0021715 | = | —32.981642  65.656383 —15.379086 | | As{)
~0.050914 —28.538577  17.402838  48.103589 | | A[V;”)|
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and
ASY = —0.001795 657 = —0.045263 + (—0.001795) = —0.04706
ASY = —0.000985 8 = ~0.007718 + (~0.000985) = —0.00870

AV = —0.001767  [V{)| = 0.973451 + (—0.001767) = 0.971684

For the third iteration, we have

—0.000216 51.596701 —31.693866  21.147447 A5D
0.000038 | = | —32.933865 65597585 -15.351628 | | As{P
—0.000143 —28.548205  17.396932  47.954870 | | A2
and
A8 = —0.000038 89 = —0.047058 + (—0.0000038) = —0.04706
A5 = —0.0000024 &3 = —0.008703 + (—0.0000024) = 0.008705

AV = -0.0000044  |V{D| =0.971684 + (~0.0000044) = 0.97168

The solution converges in 3 iterations with a maximum power mismatch of 2.5 x
10~* with V5 = 0.97168/—2.696° and V3 = 1.04/—0.4988°. From (6.52) and
(6.53), the expressions for reactive power at bus 3 and the slack bus real and reac-
tive powers are :
Qs = —|V3]|Vi]|Ya1]sin(631 — 05 + 61) — |V3||V2]| Y32 1
sin(f32 — 03 + 02) — |Va|?|Yas] sin 033 :
Py = |Vi[*|Yi1] cos O11 + |V1||Va|[Yia| cos(61a — 61 + 62) + |V || V5]
|Y13] cos(613 — &1 + 83)
Q1 = —|Vi[*|Yu1|sin 011 — |[V3||Va||Yia| sin(612 — 81 + 62) — |V4||V3|
|Y13]sin(f13 — &1 + d3)

Upon substitution, we have

Q3 = 1.4617 pu
P, =2.1842 pu
Q1 = 1.4085 pu

Finally, the line flows are calculated in the same manner as the line flow calcula-
tions in the Gauss-Seidel method described in Example 6.7, and the power flow
diagram is as shown in Figure 6.13.

A program named Ilfnewton is developed for power flow solution by the
Newton-Raphson method for practical power systems. This program must be pre-
ceded by the Ifybus program. busout and lineflow programs can be used to print
the load flow solution and the line flow results. The format is the same as the
Gauss-Seidel. The following is a brief description of the Ifnewton program.
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Ifnewton This program obtains the power flow solution by the Newton-Raphson
method and requires the busdata and the linedata files described in Sec-
tion 6.9. It is designed for the direct use of load and generation in MW and
Myvar, bus voltages in per unit, and angle in degrees. Loads and generation
are converted to per unit quantities on the base MVA selected. A provision
is made to maintain the generator reactive power of the voltage-controlled
buses within their specified limits. The violation of reactive power limit may
occur if the specified voltage is either too high or too low. In the second it-
eration, the var calculated at the generator buses are examined. If a limit is
reached, the voltage magnitude is adjusted in steps of 0.5 percent up to +5
percent to bring the var demand within the specified limits.

Example 6.11

Obtain the power flow solution for the IEEE-30 bus test system by the Newton-
Raphson method.

The data required is the same as in Example 6.9 with the following commands

clear % clears all variables from the workspace.
basemva = 100; accuracy = 0.001; maxiter = 12;

busdata = [ same as in Example 6.9 1;
linedata = [ same as in Example 6.9 ];

1fybus % Forms the bus admittance matrix
lfnewton % Power flow solution by Newton-Raphson method
busout % Prints the power flow solution on the screen

lineflow % Computes and displays the line flow and losses
The output of ifnewton is

Power Flow Solution by Newton-Raphson Method
Maximum Power mismatch = 7.54898e-07
No. of iterations = 4

Bus Voltage Angle - ----- Load----- --Generation-- Injected
No. 'Mag. Degree MW Mvar MW Mvar Mvar

1 1.060 0.000 0.000 0.000 260.998 -17.021 0.00
2 1.043 -5.497 21.700 12.700 40.000 48.822 0.00
3 1.022 -8.004 2.400 1.200 0.000 0.000 0.00
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4 1.013 -9.661 7.600 1.600 0.000 0.000 0.00
5 1.010 -14.381 94.200 19.000 0.000 35.975 0.00
6 1.012 -11.398 0.000 0.000 0.000 0.000 0.00
7 1.003 -13.150 22.800 10.900 0.000 0.000 0.00
8 1.010 -12.115 30.000 30.000 0.000 30.826 0.00
9 1.051 -14.434 0.000 0.000 0.000 0.000 0.00
10 1.044 -16.024 5.800 2.000 0.000 0.000 19.00
11 1.082 -14.434 0.000 0.000 0.000 16.119 0.00
12 1.057 -15.302 11.200 7.500 0.000 0.000 0.00
13 1.071 -15.302 0.000 0.000 0.000 10.423 0.00
14 1.042 -16.191 6.200 1.600 0.000 0.000 0.00
15 1.038 -16.278 8.200 2.500 0.000 0.000 0.00
16 1.045 -15.880 3.500 1.800 0.000 0.000 0.00
17 1.039 -16.188 9.000 5.800 0.000 0.000 0.00
18 1.028 -16.884 3.200 0.900 0.000 0.000 0.00
19 1.026 -17.052 9.500 3.400 0.000 0.000 0.00
20 1.029 -16.852 2.200 0.700 0.000 0.000 0.00
21 1.032 -16.468 17.500 11.200 0.000 0.000 0.00
22 1.033 -16.455 0.000 0.000 0.000 0.000 0.00
23 1.027 -16.662 3.200 1.600 0.000 0.000 0.00
24 1.022 -16.830 8.700 6.700 0.000 0.000 4.30
25 1.019 -16.424 0.000 0.000 0.000 0.000 0.00
26 1.001 -16.842 3.500 2.300 0.000 0.000 0.00
27 1.026 -15.912 0.000 0.000 0.000 0.000 0.00
28 1.011 -12.057 0.000 0.000 0.000 0.000 0.00
29 1.006 -17.136 2.400 0.900 0.000 0.000 0.00
30 0.995 -18.015 10.600 1.900 0.000 0.000 0.00
Total 283.400 126.200 300.998 125.144 23.30

The output of the lineflow is the same as the line flow output of Example 6.9 with
the power mismatch as dictated by the Newton-Raphson method.

6.11 FAST DECOUPLED POWER FLOW SOLUTION

Power system transmission lines have a very high X/R ratio. For such a system,
real power changes AP are less sensitive to changes in the voltage magnitude
and are most sensitive to changes in phase angle A§. Similarly, reactive power is
less sensitive to changes in angle and are mainly dependent on changes in voltage
magnitude. Therefore, it is reasonable to set elements J2 and J3 of the Jacobian
matrix to zero. Thus, (6.54) becomes

[2g]=[{f iHA‘T{i.] (6.68)
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or
apP
AP =J1A8 = [—5] A (6.69)
oQ
AQ = JA|V| = [—=] AV 6.70
Q4I|[6|V|]II (6.70)

(6.69) and (6.70) show that the matrix equation is separated into two decoupled
equations requiring considerably less time to solve compared to the time required
for the solution of (6.54). Furthermore, considerable simplification can be made to
eliminate the need for recomputing J; and Jy4 during each iteration. This procedure
results in the decoupled power flow equations developed by Stott and Alsac[75—
76]. The diagonal elements of J; described by (6.55) may be written as

oP, & . _
35.z =Y [VillV;lI¥i;] sin(8i; — 6 + &5) — |Vil?|Yis| sin 6;;
1 j=1

Replacing the first term of the above equation with —@Q);, as given by (6.53), results
in
OF;
06;

= —Q; — |Vi|*|Yi|sin 6
= —-Q; — |Vil’Bi

Where B;; = |Y;;|sin 6;; is the imaginary part of the diagonal elements of the bus
admittance matrix. B;; is the sum of susceptances of all the elements incident to bus
i. In a typical power system, the self-susceptance B;; >> @;, and we may neglect
Q;. Further simplification is obtained by assuming |V;|? = |V;|, which yields

OF;

25 = —|Vil By (6.71)

Under normal operating conditions, d; — d; is quite small. Thus, in (6.56) assuming
0i — 0; + 0 = 0y, the off-diagonal elements of .J; becomes

OF;
86;

= ~|Vil|V;|By;

Further simplification is obtained by assuming |V;| ~ 1

dP;
55 = ~IVilBy (6.72)
2
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Similarly, the diagonal elements of J, described by (6.61) may be written as

00Q; ) d R
(9IVZI = —[VillYai|sin 65 — Y |Vi||V;|[ V35| sin(8s; — & + 5;)

J=1

replacing the second term of the above equation with —@Q);, as given by (6.53),
results in

0Q; .
= =|Vil|Yii| sin 05 + Q;
olVi
Again, since B;; = Yj;sin 0;; > Q;, Q; may be neglected and (6.61) reduces to
80
al?,,’, = —|VilBs (6.73)
1
Likewise in (6.62), assuming 0ij — 0; + 0; = 6;; yields
90;
Qs = —IViIBij (6.74)
oVl
With these assumptions, equations (6.69) and (6.70) take the following form
AP
Vil = —B' Aé (6.75)
1
A .
IVﬁ = —B" A|V| (6.76)
?

Here, B’ and B” are the imaginary part of the bus admittance matrix Ybus- Since
the elements of this matrix are constant, they need to be triangularized and in-
verted only once at the beginning of the iteration. B’ is of order of (n —1). For
voltage-controlled buses where |V;| and P; are specified and Q; is not specified,
the corresponding row and column of Yj,,, are eliminated. Thus, B” is of order of
(n — 1 — m), where m is the namber of voltage-regulated buses. Therefore, in the
fast decoupled power flow algorithm, the successive voltage magnitude and phase
angle changes are

Ad = _[B']—I-IAVIT- (6.77)
AlV| = _[15»"]-1-?76'2 (6.78)

The fast decoupled power flow solution requires more iterations than the Newton-

Raphson method, but requires considerably less time per iteration, and a power
flow solution is obtained very rapidly. This technique is very useful in contingency
analysis where numerous outages are to be simulated or a power flow solution is
required for on-line control.
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Example 6.12

Obtain the power flow solution by the fast decoupled method for the system of Ex-
ample 6.8.

The bus admittance matrix of the system as obtained in Example 6.10 is

20 — 750 -10+ 3520 —-10+ 3530
—-10+ 520 26 — 3552 —16+ j32

-1043530 —-16+ 532 26 — j62

In this system, bus 1 is the slack bus and the corresponding bus susceptance matrix
for evaluation of phase angles Ady and Ads is

B'=[_52 32]

Ybus =

32 —62
The inverse of the above matrix is
[B']"l _ [ —0.028182 —0.014545
- —0.014545 —0.023636

From (6.52) and (6.53), the expressions for real power at bus 2 and 3 and the
reactive power at bus 2 are
Py = |Va||Va||Ya1| cos(Ba1 — 83 + 81) + [ViZ||Yaz| cos Oz
+|VQHV3”Y23| 005(923 — 09 + (53)
P; = |V3”V1”Y31| COS(931 — 63+ 51) + |V3“V2“Y32| COS(032
—03 + 82) + |Vi2||Ya3] cos 033
Q2 = —|Val||V1||Ya1|sin(021 — 82 + &1) — |ViZ||Yaz| sin 622
—IV2HV3[|§’23| sin(023 — 60+ 53)
The load and generation expressed in per units are
gsch _ _ (400 + 7250)
2 100
200

sch __ 2V7
3 =100 20 pu

The slack bus voltage is V3 = 1.05/0 pu, and the bus 3 voltage magnitude is
|V3| = 1.04 pu. Starting with an initial estimate of |V2(o)| = 1.0, 6&0) = 0.0, and
ag") = 0.0, the power residuals are computed from (6.63) and (6.64)

=-4.0—-3525 pu

APZSO) = pgeh _ Péo) = —4.0— (~1.14) = —2.86
AP{® = pgeh — PO = 2.0 - (0.5616) = 1.4384
AQgO) — Qgch _ ng) =—-25— (_228) = —0.22
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The fast decoupled power flow algorithm given by (6.77) becomes
)1 1% )1
A&

Since bus 3 is a regulated bus, the corresponding row and column of B’ are elimi-
nated and we get

—2.8600

1.4384
1.04

—0.028182
—0.014545

—0.014545

—0.060483
—0.023636

—0.008909

B" = [-52]
From (6.78), we have
—-17 [-.22
AV, = - [5—2-] [I_()—J = ~0.0042308
The new bus voltages in the first iteration are -

65 = 0+ (—0.060483) = —0.060483
85 = 0+ (~0.008989) = —0.008989
IVaD| =1+ (—0.0042308) = 0.995769

A = —0.060483
A8 = —0.008989
AV = —0.0042308

The voltage phase angles are in radians. The process is continued until power resid-
uals are within a specified accuracy. The result is tabulated in the table below.

Iter 0 03 I‘/Ql AP, APD; AQ2
1 -0.060482 -0.008909 0.995769 -2.860000 1.438400 -0.220000
2 -0.056496 -0.007952 0.965274 0.175895 -0.070951 -1.579042
3 -0.044194 -0.008690 0.965711 0.640309 -0.457039  0.021948
4 -0.044802 -0.008986 0.972985 -0.021395 0.001195 0.365249
5 -0.047665 -0.008713 0.973116 -0.153368 0.1 12899  0.006657
6 -0.047614 -0.008645 0.971414 0.000520 0.002610 -0.086136
7 -0.046936 -0.008702 0.971333 0.035980 -0.026190  -0.004067
8 -0.046928 -0.008720 0.971732 0.000948 -0.001411 0.020119
9 -0.047087 -0.008707 0.971762 -0.008442 0.006133  0.001558
10 -0.047094 -0.008702 0.971669 -0.000470 0.000510  -0.004688
11 -0.047057 -0.008705 0.971660 0.001971 -0.001427 -0.000500
12 -0.047054 -0.008706 0.971681 0.000170 -0.000163  0.001087
13 -0.047063 -0.008706 0.971684 -0.000458 0.000330  0.000151
14 -0.047064 -0.008706 0.971680 -0.000053 0.000048  -0.000250

Converting phase angles. to degrees the final solution is V5 = 0.97168/—2.696°
and V3 = 1.04/—-0.4988°. Using (6.52) and (6.53) as in Example 6.10, the reactive
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power at bus 3 and the slack bus real and reactive powers are

Q3 = 14617 pu
P, = 21842 pu
)1 = 1.4085 pu

The fast decoupled power flow for this example has taken 14 iterations with the
maximum power mismatch of 2.5 x 10~% pu compared to the Newton-Raphson
method which took only three iterations. The highest X/ R ratio of the transmission
lines in this example is 3. For systems with a higher X/ R ratio, the fast decoupled
power flow method converges in relatively fewer iterations. However, the number
of iterations is a function of system size.

Finally, the line flows are calculated in the same manner as the line flow cal-
culations in the Gauss-Seidel method described in Example 6.7, and the power flow
diagram is as shown in Figure 6.13.

A program named decouple is developed for power flow solution by the fast
decoupled method for practical power systems. This program must be preceded by
the Ifybus program. busout and lineflow programs can be used to print the load
flow solution and the line flow results. The format is the same as the Gauss-Seidel
method. The following is a brief description of the decouple program:

decouple This program finds the power flow solution by the fast decouple method
and requires the busdata and the linedata files described in Section 6.9. It is
designed for the direct use of load and generation in MW and Myvar, bus volt-
ages in per unit, and angle in degrees. Loads and generation are converted
to per unit quantities on the base MVA selected. A provision is made to
maintain the generator reactive power of the voltage-controlled buses within
their specified limits. The violation of reactive power limit may occur if the
specified voltage is either too high or too low. In the 10th iteration, the vars
calculated at the generator buses are examined. If a limit is reached, the volt-
age magnitude is adjusted in steps of 0.5 percent up to +5 percent to bring
the var demand within the specified limits.

Example 6.13

Obtain the power flow solution for the IEEE-30 bus test system by the fast decou-
pled method.

Data required is the same as in Example 6.9 with the following commands
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clear % clears all variables from the workspace.
basemva = 100; accuracy = 0.001; maxiter = 20;

busdata= [ same as in Example 6.9 ],
linedata = [ same as in Example 6.9 ],

1fybus % Forms the bus admittance matrix
decouple % Power flow solution by fast decoupled method
busout % Prints the power flow solution on the screen

lineflow J Computes and displays the line flow and losses
The output of decouple is

Power Flow Solution by Fast Decoupled Method
Maximum Power mismatch = 0.000919582
No. of iterations = 15

Bus Voltage Angle — ----- Load----- ~-Generation-- Injected
No. Mag. Degree MW Mvar MW Mvar Mvar
1 1.060 0.000 0.000 0.000 260.998 -17.021 0.00
2 1.043 -5.497 21.700 12.700 40.000 48.822 0.00
3 1.022 -8.004 2.400 1.200 0.000 0.000 0.00
4 1.013 -9.662 7.600 1.600 0.000 0.000 0.00
5 1.010 -14.381 94.200 19.000 0.000 35.975 0.00
6 1.012 -11.398 0.000 0.000 0.000 0.000 0.00
7 1.003 -13.149 22.800 10.900 0.000 0.000 0.00
8 1.010 -12.115 30.000 30.000 0.000 30.828 0.00
9 1.051 -14.434 0.000 0.000 0.000 0.000 0.00
10 1.044 -16.024 5.800 2.000 0.000 0.000 19.00
11 1.082 -14.434 0.000 0.000 0.000 16.120 0.00
12 1.057 -15.303 11.200 7.500 0.000 0.000 0.00
13 1.071 -15.303 0.000 0.000 0.000 10.421 0.00
14 1.042 -16.198 6.200 1.600 0.000 0.000 0.00
15 1.038 -16.276 8.200 2.500 0.000 0.000 0.00
16 1.045 -15.881 3.500 1.800 0.000 0.000 0.00
17 1.039 -16.188 9.000 5.800 0.000 0.000 0.00
18 1.028 -16.882 3.200 0.900 0.000 0.000 0.00
19 1.025 -17.051 9.500 3.400 0.000 0.000 0.00
20 1.029 -16.852 2.200 0.700 0.000 0.000 0.00
21 1.032 -16.468 17.500 11.200 0.000 0.000 0.00
22 1.033 -16.454 0.000 0.000 0.000 0.000 0.00
23 1.027 -16.661 3.200 1.600 0.000 0.000 0.00
24 1.022 -16.829 8.700 6.700 0.000 0.000 4.30
256 1.019 -16.423 0.000 0.000 0.000 0.000 0.00
26 1.001 -16.840 3.500 2.300 0.000 0.000 0.00
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27 1.026 -15.912 0.000 0.000 0.000 0.000 0.00
28 1.011 -12.057 0.000 0.000 0.000 0.000 0.00
29 1.006 -17.136 2.400 0.900 0.000 0.000 0.00
30 0.995 -18.014 10.600 1.900 0.000 0.000 0.00

Total 283.400 126.200 300.998 125.145 23.30

The output of the lineflow is the same as the line flow output of Example 6.9 with
the power mismatch as dictated by the fast decoupled method.

PROBLEMS

6.1. A power system network is shown in Figure 6.17. The generators at buses
1 and 2 are represented by their equivalent current sources with their reac-
tances in per unit on a 100-MVA base. The lines are represented by 7 model
where series reactances and shunt reactances are also expressed in per unit
on a 100 MVA base. The loads at buses 3 and 4 are expressed in MW and
Muvar.

(a) Assuming a voltage magnitude of 1.0 per unit at buses 3 and 4, convert
the loads to per unit impedances. Convert network impedances to admit-
tances and obtain the bus admittance matrix by inspection.

(b) Use the function Y = ybus(zdata) to obtain the bus admittance matrix.
The function argument zdata is a matrix containing the line bus numbers,
resistance and reactance. (See Example 6.1.)

Ol . [

54
100 MW +525 Mvar 200 MW +3550 Mvar

FIGURE 6.17
One-line diagram for Problem 6.1.
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6.2. A power system network is shown in Figure 6.18. The values marked are
impedances in per unit on a base of 100 MVA. The currents entering buses 1
and 2 are

I, =1.38 — j2.72 pu
I, = 0.69 — 71.36 pu

(a) Determine the bus admittance matrix by inspection.

(b) Use the function Y = ybus(zdata) to obtain the bus admittance matrix.
The function argument zdata is a matrix containing the line bus numbers,
resistance and reactance. (See Example 6.1.) Write the necessary MATLAB
commands to obtain the bus voltages.

FIGURE 6.18
One-line diagram for Problem 6.2.

6.3. Use Gauss-Seidel method to find the solution of the following equations

1+ x122 = 10
Ty +z2=6

with the following initial estimates

@ =landz¥ =1

® 2 =1and z{¥ = 2

Continue the iterations until |Aa:§k)| and legk)l are less than 0.001.
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6.5.

6.6.
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A fourth-order polynomial equation is given by
zt — 2123 + 1472% — 379z + 252 =0

(a) Use Newton-Raphson method and hand calculations to find one of the
roots of the polynomial equation. Start with the initial estimate of @ =0
and continue until |Az*)| < 0.001.

(b) Write a MATLAB program to find the roots of the above polynomial by
Newton-Raphson method. The program should prompt the user to input the
initial estimate. Run using the initial estimates of 0, 3, 6, 10.

(c) Check your answers using the MATLAB function r = roots(A), where A
is a row vector containing the polynomial coefficients in descending powers.

Use Newton-Raphson method and hand calculation to find the solution of
the following equations:

a? -2z —29=3
x? + a3 =41

(a) Start with the initial estimates of w§°) =2, mg)) = 3. Perform three itera-
tions.

(b) Write a MATLAB program to find one of the solutions of the above equa-
tions by Newton-Raphson method. The program should prompt the user to
input the initial estimates. Run the program with the above initial estimates.

In the power system network shown in Figure 6.19, bus 1 is a slack bus with
V1 = 1.0£0° per unit and bus 2 is a load bus with S, = 280 MW + j60
Myvar. The line impedance on a base of 100 MVA is Z = 0.02 + j0.04 per
unit. ‘

(a) Using Gauss-Seidel method, determine V5 . Use an initial estimate of
Vz(o) = 1.0 + 0.0 and perform four iterations.

(b) If after several iterations voltage at bus 2 converges to Vo = 0.90—;0.10,
determine S and the real and reactive power loss in the line.

Z19 = 0.02 + 70.04
o —

1 S, = 280 MW 760 Mvar

FIGURE 6.19

One-line diagram for Problem6.6.
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-1
Vi =1/0°1 I35 2
Slack
300 MW 270 Mvar
FIGURE 6.20

One-line diagram for Problem 6.7.

6.7.

6.8.

Figure 6.20 shows the one-line diagram of a simple three-bus power system
with generation at bus 1. The voltage at bus 1 is V; = 1.0£0° per unit.
The scheduled loads on buses 2 and 3 are marked on the diagram. Line
impedances are marked in per unit on a 100-MVA base. For the purpose
of hand calculations, line resistances and line charging susceptances are ne-
glected.

(a) Using Gauss-Seidel method and initial estimates of V,) = 1.0 + j0 and

V3(O) = 1.0 + 50, determine V3 and V3. Perform two iterations.
(b) If after several iterations the bus voltages converge to

V2 = 0.90 — 50.10 pu
V3 = 0.95 — 50.05 pu

determine the line flows and line losses and the slack bus real and reactive
power. Construct a power flow diagram and show the direction of the line
flows.

(c) Check the power flow solution using the Ifgauss and other required pro-
grams. (Refer to Example 6.9.) Use a power accuracy of 0.00001 and an
acceleration factor of 1.0.

Figure 6.21 shows the one-line diagram of a simple three-bus power system
with generation at buses 1 and 3. The voltage at bus 1is V; = 1.025/0° per
unit. Voltage magnitude at bus 3 is fixed at 1.03 pu with a real power gener-
ation of 300 MW. A load consisting of 400 MW and 200 Mvar is taken from
bus 2. Line impedances are marked in per unit on a 100-MVA base. For the
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0.05 P; = 300 MW

| V3 |=1.03

400 MW 200 Mvar

FIGURE 6.21
One-line diagram for Problem 6.8.

purpose of hand calculations, line resistances and line charging susceptances
are neglected.

(a) Using Gauss-Seidel method and initial estimates of VQ(O) = 1.0+ 50 and
V(O) = 1.03 + ;jO and keeping |V3| = 1.03 pu, determine the phasor values
of V4 and V3 . Perform two iterations.

(b) If after several iterations the bus voltages converge to

Vo = 1.001243/—2.1° = 1.000571 — j0.0366898 pu
V3 =1.03/1.36851° = 1.029706 + j0.0246 pu

determine the line flows and line losses and the slack bus real and reactive
power. Construct a power flow diagram and show the direction of the line
flows. :

(c) Check the power flow solution using the Ifgauss and other required pro-
grams. (Refer to Example 6.9.)

X, = §0.0125 702 — j0.16
I_% % ) C |
j0.25 DAGE
0.8:1 1251 2
4
FIGURE 6.22

One-line diagram for Problem 6.9.
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6.9. The one-line diagram of a four-bus power system is as shown in Figure 6.22,
Reactances are given in per unit on a common MVA base. Transformers T}

and T3 have tap settings of 0.8:1, and 1.25:1 respectively. Obtain the bus
admittance matrix.

6.10. In the two-bus system shown in Figure 6.23, bus 1 is a slack bus with Vi =
1.0£0° pu. A load of 150 MW and 50 Mvar is taken from bus 2. The line
admittance is y12 = 10/~73.74° pu on a base of 100 MVA. The expression
for real and reactive power at bus 2 is given by

Py = 10[V3||V1| cos(106.26° — 83 + &1) + 10[Va|? cos(—73.74°)
Q2 = —10|V,|[V1|sin(106.26° — 5 + &1) — 10|V |? sin(—73.74°)

Using Newton-Raphson method, obtain the voltage magnitude and phase

angle of bus 2. Start with an initial estimate of |V2|(°) = 1.0 pu and 6, =
0°. Perform two iterations.

Y12 = 2.8 — j9.6 > 150 MW

0/0° —+> 50 Mvar

FIGURE 6.23
One-line diagram for Problem 6.10.

6.11. In the two-bus system shown in Figure 6.24, bus 1 is a slack bus with V} =
1.0£0° pu. A load of 100 MW and 50 Mvar is taken from bus 2. The line
impedance is z12 = 0.12 + 50.16 pu on a base of 100 MVA. Using Newton-
Raphson method, obtain the voltage magnitude and phase angle of bus 2.
Start with an initial estimate of |V2|(O) = 1.0 pu and 6,9 = 0°. Perform
two iterations.

212 = 0.12 + j0.16 > 100 MW

0/0° —+—>- 50 Mvar

FIGURE 6.24
One-line diagram for Problem 6.11.
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6.12. Figure 6.25 shows the one-line diagram of a simple three-bus power system
with generation at buses 1 and 2. The voltage at bus 1is V = 1.0/0° per unit.
Voltage magnitude at bus 2 is fixed at 1.05 pu with a real power generation
of 400 MW. A load consisting of 500 MW and 400 Mvar is taken from bus
3. Line admittances are marked in per unit on a 100 MVA base. For the
purpose of hand calculations, line resistances and line charging susceptances
are neglected.

1 y12 = —340 2
Py =400 MW
o 2
Y13 = —3j20 yo3 = —320
Slack Bus 3 | Vo |=1.056
Vi = 1.0/0°
500 400
MwW Myvar
FIGURE 6.25

One-line diagram for Problem 6.12

(a) Show that the expression for the real power at bus 2 and real and reactive
power at bus 3 are

Py = 40|V5||V1] cos(90° — 82 + 81) + 20|V2|| V3] cos(90° — &2 + d3)
P = 20'V3”V1[ COS(QOO — 03 + 51) + 20"/3”‘/2| COS(90° — 03+ 52)
Q3 = —20[V3|V3| sin(90° — 63+ 8;) — 20| V3| |Va| sin(90° — 63+ 52) +40| V3 |*

(b) Using Newton-Raphson method, start with the initial estimates of Vz(o) =
1.0 4 50 and V3% = 1.0 + 50, and keeping |V5| = 1.05 pu, determine the
phasor values of V5 and V3. Perform two iterations. _

(c) Check the power flow solution for Problem 6.12 using Ifnewton and other
required programs. Assume the regulated bus (bus # 2) reactive power limits
are between 0 and 600 Mvar.

6.13. For Problem 6.12:
(a) Obtain the power flow solution using the fast decoupled algorithm. Per-
form two iterations.
(b) Check the power flow solution for Problem 6.12 using decouple and
other required programs. Assume the regulated bus (bus # 2) reactive power
limits are between 0 and 600 Mvar.

6.14. The 26-bus power system network of an electric utility company is shown
in Figure 6.26 (page 256). Obtain the power flow solution by the following
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methods:

(a) Gauss-Seidel power flow (see Example 6.9).

(b) Newton-Raphson power flow (see Example 6.11).
(c) Fast decoupled power flow (see Example 6.13).

The load data is as follows.

LOAD DATA
Bus Load Bus Load
No. MW Mvar || No. MW Mvar
1 51.0 41.0 14 240 120
2 220 15.0 15 700 310
3 640 50.0 16 550 270
4 250 10.0 17  78.0 38.0 ]
5 500 30.0 18 153.0 67.0 1
6 76.0 29.0 19 750 15.0 7
7 00 0.0 20 480 270
8 00 0.0 21 460 230
9 89.0 50.0 22 450 220
10 0.0 0.0 23 250 120
11 250 15.0 24 540 270
12 89.0 48.0 25 280 13.0
13 31.0 15.0 26 400. 200

Voltage magnitude, generation schedule, and the reactive power limits for
the regulated buses are tabulated below. Bus 1, whose voltage is specified as
V1 = 1.025/0°, is taken as the slack bus.

GENERATION DATA

Bus Voltage Generation Mvar Limits

No. Mag. MW Min. Max.
1 1.025

2 1.020 79.0 40.0 2500

3 1.025 20.0 40.0 150.0

4 1.050 100.0 40.0 800

5 1.045 300.0 40.0 160.0

26 1015 60.0 150 500

The Mvar of the shunt capacitors installed at substations and the transformer
tap settings are given below.
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SHUNT CAPACITORS TRANSFORMER TAP
Bus No. Myvar — :
Designation Tap Setting
1 4.0
4 2.0 2—- 3 0.960
5 5'0 2-13 0.960
6 2'0 3—-13 1.017
11 1' 5 4- 8 1.050
12 2'0 4—-12 1.050
15 0' 5 6—19 0.950
19 50 7— 9 0.950

The line and transformer data containing the series resistance and reactance
in per unit and one-half the total capacitance in per unit susceptance on a
100-MVA base are tabulated below.

LINE AND TRANSFORMER DATA
Bus Bus R, X, 1B, | Bus Bus R, X, 1B,
No. No. pu pu pu No. No. pu pu pu
2 0.0005 0.0048 0.0300 || 10 22 0.0069 0.0298 0.005
18 0.0013 0.0110 0.0600 || 11 25 0.0960 0.2700 0.010
3 0.0014 0.0513 0.0500 || 11 26 0.0165 0.0970 0.004
7 0.0103 0.0586 0.0180 {| 12 14 0.0327 0.0802 0.000
8 0.0074 0.0321 0.0390 || 12 15 0.0180 0.0598 0.000
13 0.0035 0.0967 0.0250 || 13 14 0.0046 0.0271 0.001
26 0.0323 0.1967 0.0000 || 13 15 0.0116 0.0610 0.000
13 0.0007 0.0054 0.0005 |[ 13 16 0.0179 0.0888 0.001
8 0.0008 0.0240 0.0001 || 14 15 0.0069 0.0382 0.000
12 0.0016 0.0207 0.0150 || 15 16 0.0209 0.0512 0.000
6 0.0069 0.0300 0.0990 || 16 17 0.0990 0.0600 0.000
7 0.0053 0.0306 0.0010 {f 16 20 0.0239 0.0585 0.000
11 0.0097 0.0570 0.0001 || 17 18 0.0032 0.0600 0.038
18 0.0037 0.0222 0.0012 || 17 21 0.2290 0.4450 0.000
19 0.0035 0.0660 0.0450 || 19 23 0.0300 0.1310 0.000
21 0.0050 0.0900 0.0226 || 19 24 0.0300 0.1250 0.002
8 0.0012 0.0069 0.0001 i 19 25 0.1190 0.2249 0.004
9 0.0009 0.0429 0.0250 |j 20 21 0.0657 0.1570 0.000
12 0.0020 0.0180 0.0200 || 20 22 0.0150 0.0366 0.000
10 0.0010 0.0493 0.0010 | 21 24 0.0476 0.1510 0.000
10 12 0.0024 0.0132 0.0100 || 22 23 0.0290 0.0990 0.000
10 19 0.0547 0.2360 0.0000 || 22 24 0.0310 0.0880 0.000
10 20 0.0066 0.0160 0.0010 }| 23 25 0.0987 0.1168 0.000

—
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FIGURE 6.26
One-line diagram for Problem 6.14.




CHAPTER

7

OPTIMAL DISPATCH
OF GENERATION

7.1 INTRODUCTION

The formulation of power flow problem and its solutions were discussed in Chap-
ter 6. One type of bus in the power flow was the voltage-controlled bus, where real
power generation and voltage magnitude were specified. The power flow solution
provided the voltage phase angle and the reactive power generation. In a practical
power system, the power plants are not located at the same distance from the center
of loads and their fuel costs are different. Also, under normal operating conditions,
the generation capacity is more than the total load demand and losses. Thus, there
are many options for scheduling generation. In an interconnected power system,
the objective is to find the real and reactive power scheduling of each power plant
in such a way as to minimize the operating cost. This means that the generator’s
real and reactive power are allowed to vary within certain limits so as to meet a
particular load demand with minimum fuel cost. This is called the optimal power
Jlow (OPF) problem. The OPF is used to optimize the power flow solution of large
scale power system. This is done by minimizing selected objective functions while
maintaining an acceptable system performance in terms of generator capability
limits and the output of the compensating devices. The objective functions, also

257
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known as cost functions, may present economic costs, system security, or other
objectives. Efficient reactive power planning enhances economic operation as well
as system security. The OPF has been studied by many researchers and many al-
gorithms using different objective functions and methods have been presented [11,
12, 22, 23, 40, 42, 54, 78].

In this chapter, we will limit our analysis to the economic dispatch of real
power generation. The classical optimization of continuous functions is introduced.
The application of constraints to optimization problems is presented. Following
this, the incremental production cost of generation is introduced. The economic
dispatch of generation for minimization of the total operating cost with transmis-
sion losses neglected is obtained. Next, the transmission loss formula is derived
and the economic dispatch of generation based on the loss formula is obtained.
A program named bloss is developed for the evaluation of the transmission loss
B coefficients which can be used following any one of the power flow programs
Ifgauss, lfnewton, or decouple discussed in Chapter 6. Also, a general program
called dispatch is developed for the optimal scheduling of real power generation
and can be used in conjunction with the bloss program.

7.2 NONLINEAR FUNCTION OPTIMIZATION

Unconstrained Parameter Optimization

Nonlinear function optimization is an important tool in computer-aided design and
is part of a broader class of optimization called nonlinear programming. The un-
derlying theory and the computational methods are discussed in many books. The
basic goal is the minimization of some nonlinear objective cost function subject to
nonlinear equality and inequality constraints.

The mathematical tools that are used to solve unconstrained parameter opti-
mization problems come directly from multivariable calculus. The necessary con-
dition to minimize the cost function

flzy,zo, ... 2p) a.1n

is obtained by setting derivative of f with respect to the variables equal to zero,
1.€.,

of

6:121' -

0 i=1,....n (7.2)
or

V=0 (7.3)
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where

of oOf of

835’1’8332"”’6%

Vf=( ) (7.4)

which is known as the gradient vector. The terms associated with second deriva-
tives is given by

% f

H= 8x, aiL'j

.5)

The above equation results in a symmetric matrix called the Hessian matrix of the
function.

Once the derivative of f is vanished at local extrema (%1, Z3, . .., Z,), for f
to have a relative minimum, the Hessian matrix evaluated at (Z1, o, . . . , £,) must
be a positive definite matrix. This condition requires that all the eigenvalues of the
Hessian matrix evaluated at (£, £2, .. . , ) be positive.

In summary, the unconstrained minimum of a function is found by setting
its partial derivatives (with respect to the parameters that may be varied) equal
to zero and solving for the parameter values. Among the sets of parameter values
obtained, those at which the matrix of second partial derivatives of the cost function
is positive definite are local minima. If there is a single local minimum, it is also
the global minimum; otherwise, the cost function must be evaluated at each of the
local minima to determine which one is the global minimum.

Example 7.1

Find the minimum of
flzr,z2,...,zp) = m%+2x§+3x§+a¢1x2+x2x3 — 8z1 — 169 — 32234110

Equating the first derivatives to zero, results in

ﬂ=2:r:1—l-:r:2—8=0
611

0
—f=$1+4$2+$3-—16=0
61122

0
—f—=x2+6:1:3—32=0
a:ltg

or

210 Ty 8
1 4 1 9 = 16
016 3 32
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The solution of the above linear simultaneous equation is readily obtained (in MAT-
LABuse X = A\B) and is given by (21, &2,43) = (3,2,5). The function evalu-
ated at this point is f(3,2,5) = 2. To see if this point is a minimum, we evaluate
the second derivatives and form the Hessian matrix

A 210
HX)=|1 4 1
01 6

Using the MATLAB function eig(H), the eigenvalues are found to be 1.55, 4.0 and
6.45, which are all positive. Thus, the Hessian matrix is a positive definite matrix
and (3, 2, 5) is a minimum point.

7.2.1 CONSTRAINED PARAMETER OPTIMIZATION
EQUALITY CONSTRAINTS

This type of problem arises when there are functional dependencies among the
parameters to be chosen. The problem is to minimize the cost function

flzy, z2, ..., 2n) | (7.6)
subject to the equality constraints
9i(z1,22,...,2,) =0 Ci=1,2,...,k 7.7

Such problems may be solved by the Lagrange multiplier method. This provides
an augmented cost function by introducing k-vector A of undetermined quantities.
The unconstrained cost function becomes

L=i+Y s | (7.8)
i=1

The resulting necessary conditions for constrained local minima of £ are the fol-
lowing:

oL Bf dg;
Ox; 61:, + Z—j - *ox; =0 (7.9
oL

= y — .10
E3Y 9:=0 (7.10)

Note that Equation (7.10) is simply the original constraints.
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Example 7.2

Use the Lagrange multiplier method for solving constrained parameter optimiza-
tions to determine the minimum distance from origin of the zy plane to a circle
described by

(x—8)%+ (y—6)> =25

The minimum distance is obtained by minimization of the distance square, given
by

flz,y) =2%+¢°

The MATLAB plot command is used to plot the circle as shown in Figure 7.1.

14

10 V 4 >
Z \
L\ )

< A

\__/

0 2 4 6 8 10 12 14

FIGURE 7.1
Constraint function of Example 7.2

From this graph, clearly the minimum distance is 5, located at point (4, 3).

Now let us use Lagrange multiplier to minimize f(z,y) subject to the con-
straint described by the circle equation. Forming the Lagrange function, we obtain

L=2*+y>+ Mz —8)%+ (y—6)2 —25]
The necessary conditions for extrema are

Z_§=2x+)\(2m~—16)=0 or 2z(A+1)=16)
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%=2y+/\(2y——12)=0 or 2y(A+1)=12)\

oL 2 9
——=(z - —6)°—25=
o = @8+ (y—-6) 0
The solution of the above three equations will provide optimal points. In this prob-
lem, a direct solution can be obtained as follows:
Eliminating X from the first two equations results in

'y=zf'3

Substituting for y in the third equation yields

25 , _

T 25z +75=0
The solutions of the above quadratic equations are z = 4 and z = 12. Thus, the
corresponding extrema are at points (4, 3) with A = 1, and (12, 9) with A\ = —3.
From Figure 7.1, it is clear that the minimum distance is at point (4, 3) and the max-
imum distance is at point (12, 9). To distinguish these points, the second derivatives
are obtained and the Hessian matrices evaluated at these points are formed. The
matrix with positive eigenvalues is a positive definite matrix and the parameters
correspond to the minimum point.

In many problems, a direct solution is not possible and the above equations
are solved iteratively. Many iterative schemes are available. The simplest search
method is to assume a value for A and compute A f. If Af is zero, the estimated
A corresponds to the optimum solution. If not, depending on the sign of Af, A
is increased or decreased, and another solution is obtained. With two solutions, a
better value of \ is obtained by extrapolation and the process is continued until A f
is within a specified accuracy. A significantly superior method applicable to con-
tinuous functions is the Newton-Raphson method. One way to apply the Newton-
Raphson method to the problem at hand is as follows: From the first two equations,
z and y are found. These are

8\

DY
_6A

YT

Substituting into the third equation results in

1002 200X

_(A+1)2—)\+1+75=O

DAl
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This is a nonlinear equation in terms of A and can be solved by the Newton-
Raphson method. The Newton-Raphson method is a successive approximation pro-
cedure based on an initial estimate of the unknown and the use of Taylor’s series
expansion (see Chapter 6 for more details). For a one-dimensional case,

ANE) — -Af(A)*

(7.11)
&
and
AEFD — 2(k) . ANK) (7.12)

Starting with an estimated value of ), a new value is found in the direction of steep-
est decent (negative gradient). The process is repeated in the direction of negative
gradient until A f() is less than a specified accuracy. This algorithm is known as
the gradient method. For the above function, the gradient is

df(\) _ 2000 200 _ —200
dv (A+1)3 (A+1)27 (A+1)3

The following commands show the procedure for the solution of the given
equation by the Newton-Raphson method.

iter = 0; % Iteration counter
bf = 10; % Error in Df is set to a high value
Lambda = input(’Enter estimated value of Lambda = ’);
fprintf(’\n ’)

disp([’ Iter Df J DLambda Lambda’

} x y)J)

while abs(Df) >= 0.0001 % Test for convergence
iter = iter + 1; % No. of iterations
x = 8xLambda/(Lambda + 1);

y = 6xLambda/(Lambda + 1);

Df = (x~- 8)°2 + (y - 6)°2 - 25; % Residual
J = -200/(Lambda + 1)"3;

Delambda =-Df/J; % Change in variable
disp([iter, Df, J, Delambda, Lambda, x, y])

Lambda = Lambda + Delambda; % Successive solution
end

When the program is run, the user is prompted to enter the initial estimate for
A. Using a value of \ = 0.4, the result is

Enter estimated value of Lambda = 0.4
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Tter  Af 7 AX ) z Y

1 26.0240 -72.8863 0.3570 0.4000 2.2857 1.7134
2 7.3934 -36.8735 0.2005 0.7570 3.4468 2.5851
3
4
5

1.0972 -26.6637 0.0411 0.9575 3.9132 2.9349
0.0337 -25.0505 0.0013 0.9987 3.9973 2.9980
0.0000 -25.0001 0.0000 1.0000 4.0000 3.0000

After five iterations, the solution converges to A = 1.0, z = 4, and y = 3, corre-
sponding to the minimum length. If the program is run with an initial estimate of
~2, the solution converges to A = —3, z = 12, y = 9, which corresponds to the
maximum length.

7.2.2 CONSTRAINT PARAMETER OPTIMIZATION:
INEQUALITY CONSTRAINTS

Practical optimization problems contain inequality constraints as well as equality
constraints. The problem is to minimize the cost function

flz1,22,...,2,) (7.13)
subject to the equality constraints |
gi(z1,z2,...,2,) =0 i=1,2,...,k (7.14)
and the inequality constraints
u;(T1,%2,...,2,) <0 . i=1,2,...,m (7.15)

The Lagrange multiplier is extended to include the inequality constraints by in-
troducing m-vector  of undetermined quantities. The unconstrained cost function
becomes

k m
L=F+) g+ pu (7.16)
i=1 j=1

The resulting necessary conditions for constrained local minima of £ are the fol-
lowing:

‘%:0 i=1,...,n (7.17)
Bwi

oL .

aAi-—gi-——() 1—1,...,]6 (718)
oL

——— =u; < i=1,... 19
a,u'] u]—o .7 1, >m (7 )

mju; =0 & p; >0 jF=1,...,m (7.20)
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Note that Equation (7.18) is simply the original equality constraints. Suppose
(%1, %2, ..., %p) is a relative minimum. The inequality constraints in (7.19) is said
to be inactive if strict inequality holds at (£1,%3,...,%5) and p; = 0. On the
other hand, when strict equality holds, the constraint is active at this point, (i.e., if
the constraint pju;(21,Z2,...,%,) = 0and p; > 0. This is known as the Kuhn-
Tucker necessary condition.

Example 7.3

Solve Example 7.2 with an additional inequality constraint defined below. The
problem is to find the minimum value of the function

f(z,y) =2+ ¢
subject to one equality constraint
9(z,y) = (z-8)*+(y—6)*-25=0
and one inequality constraint,
uw(z,y) =2z+y>12
The unconstrained cost function from (7.16) is
L=2*+y"+ N(z —8)%+ (y — 6)% — 25| + u(2z + y — 12)

The resulting necessary conditions for constrained local minima of £ are

oL
%—2m+2/\(m‘—8)+2u-0

oL
5 WA= 6)+u=0
65_ 2 2 _

oL

— =2 —-12=

o T+ y 0

Eliminating p from the first two equations result in
(2r —4y)(1+X) +82=0

From the fourth condition, we have

y=12-2z
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Substituting for y in the above equation, yields
41+ 4.8
T=——
1+
Now substituting for z in the previous equation, we get
_4r+24
14

Substituting for = and y in the third condition (equality constraint) results in an
equation in terms of \

42448 2 (4 +24 2
(ﬁ*) + <T+)\__6) —2%=0
from which we have the following equation

A +2X+0.36 = 0

Roots of the above equation are A = —0.2 and A = —1.8. Substituting for these
values of ) in the expression for z and Y, the corresponding extrema are

(z,y) =(5,2) for A\=—0.2, pu=-56

(z,y) =(3,6) for \=—-18, p= —12

14
12
el
10 7 N
8
Y 6
/ /
4
Py vd
N A A N
OO 2 4 6 8 10 12 14
X
FIGURE 7.2

Constraint functions of Example 7.3.

The minimum distance from the cost function is 5.385, located at point (5, 2),
and the maximum Wistance is 6.71 located at point (3, 6).

Adding the inequality constraint 2z + y > 12 to the graphs in Figure 7.1, the
solution is verified graphically as shown in Figure 7.2.
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7.3 OPERATING COST OF A THERMAL PLANT

The factors influencing power generation at minimum cost are operating efficien-
cies of generators, fuel cost, and transmission losses. The most efficient generator
in the system does not guarantee minimum cost as it may be located in an area
where fuel cost is high. Also, if the plant is located far from the load center, trans-
mission losses may be considerably higher and hence the plant may be overly un-
economical. Hence, the problem is to determine the generation of different plants
such that the total operating cost is minimum. The operating cost plays an impor-
tant role in the economic scheduling and are discussed here.

The input to the thermal plant is generally measured in Btuw/h, and the out-
put is measured in MW. A simplified input-output curve of a thermal unit known
as heat-rate curve is given in Figure 7.3(a). Converting the ordinate of heat-rate

Fuel .
input, C8’~S
Btu/h $/h
(@) P, MW (b) B, MW
FIGURE 7.3

(a) Heat-rate curve. (b) Fuel-cost curve.

curve from Btu/h to $/h results in the fuel-cost curve shown in Figure 7.3(b). In
all practical cases, the fuel cost of generator 7 can be represented as a quadratic
function of real power generation

C; = a; + BiP; + v P? (7.21)

An important characteristic is obtained by plotting the derivative of the fuel-cost
curve versus the real power. This is known as the incremental fuel-cost curve shown
in Figure 7.4,

- dC;
dp;

=2vP+ 5 (7.22)

The incremental fuel-cost curve is a measure of how costly it will be to produce
the next increment of power. The total operating cost includes the fuel cost, and
the cost of labor, supplies and maintenance. These costs are assumed to be a fixed
percentage of the fuel cost and are generally included in the incremental fuel-cost
curve.
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Ai’
$/MWh

P, MW

FIGURE 7.4
Typical incremental fuel-cost curve.

7.4 ECONOMIC DISPATCH NEGLECTING
LOSSES AND NO GENERATOR LIMITS

The simplest economic dispatch problem is the case when transmission line losses
are neglected. That is, the problem model does not consider system configuration
and line impedances. In essence, the model assumes that the system is only one bus
with all generation and loads connected to it as shown schematically in Figure 7.5.

Ci (0} Cng
Pyl PRy - Py
Pp
FIGURE 7.5

Plants connected to a common bus.

Since transmission losses are neglected, the total demand Pp is the sum of all
generation. A cost function C; is assumed to be known for each plant. The problem

is to find the real power generation for each plant such that the objective function
(i.e., total production cost) as defined by the equation
g
Ct = Z Ci
i=1
n
=Y a; + BiP; + v P? (7.23)

i=1
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;s minimum, subject to the constraint

g
> P=Pp (7.24)
i=1

where Ct is the total production cost, C; is the production cost of ith plant, P; is
the generation of ith plant, Pp is the total load demand, and ng is the total number
of dispatchable generating plants.

A typical approach is to augment the constraints into objective function by
using the Lagrange multipliers

g
L=Ci+A (PD — Za) (1.25)

i=1

The minimum of this unconstrained function is found at the point where the partials
of the function to its variables are zero.

oL
P = 0 (7.26)
oL
T 0 7.27)
First condition, given by (7.26), results in
0C,
— 1=
P, + )\(0 )=0
Since
' Ct=01+02+”'+0n9
then
0C, _ dC; _
P,  dpP,

and therefore the condition for optimum dispatch is

dC;
dP;

=X di=1,...,n4 (7.28)
or

Bi +2vi P = A (7.29)
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Second condition, given by (7.27), results in

> P=Pp (7.30)

i=1

Equation (7.30) is precisely the equality constraint that was to be imposed. In sum-
mary, when losses are neglected with no generator limits, for most economic oper-
ation, all plants must operate at equal incremental production cost while satisfying
the equality constraint given by (7.30). In order to find the solution, (7.29) is solved
for P,

P = A= B
2
The relations given by (7.31) are known as the coordination equations. They are

functions of A. An analytical solution can be obtained for \ by substituting for P,
in (7.30), i.e.,

(7.31)

Ng _ A
> AP _p, (1.32)
§=1 271,

or

Pp+ Y, &
= Dl imlay n:‘:’—ll 2 (7.33)

A
221 5y

The value of X found from (7.33) is substituted in (7.31) to obtain the optimal
scheduling of generation.

The solution for economic dispatch neglecting losses was found analytically.
However when losses are considered the resulting equations as seen in Section
7.6 are nonlinear and must be solved iteratively. Thus, an iterative procedure is
introduced here and (7.31) is solved iteratively. In an iterative search technique,
starting with two values of ), a better value of ) is obtained by extrapolation,
and the process is continued until A P, is within a specified accuracy. However, as
mentioned earlier, a rapid solution is obtained by the use of the gradient method.
To do this, (7.32) is written as

f) =Pp (7.34)

Expanding the left-hand side of the above equation in Taylor’s series about an
operating point A*), and neglecting the higher-order terms results in

(k)
FO® 4 (fi’;(—;)) AR = P, (7.35)
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or

(7.36)

or

(7.37)

and therefore,
AEFD = AR) 4 ANK) (7.38)

where

g
AP® = pp - 5" P (7.39)

i=1
The process is continued until AP®*) js less than a specified accuracy.

Example 7.4

The fuel-cost functions for three thermal plants in $/h are given by

Ci = 500 + 5.3P; + 0.004P
Cy = 400 + 5.5P, -+ 0.006 P2
C3 = 200 + 5.8P3 + 0.009P

where Py, Py, and P3 are in MW. The total load, Pp, is 800 MW. Neglecting line
losses and generator limits, find the optimal dispatch and the total cost in $/h

(a) by analytical method using (7.33)

(b) by graphical demonstration.

(c) by iterative technique using the gradient method.

(a) From (7.33), A is found to be

53 , 55 , 58
3, — 300+ 508 + .01z * G0

0.(%08 + 0,(%12 + 0.(}18
800 + 1443.0555
= =85 $/M
2638880 oo S/MWh
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Substituting for A in the coordination equation, given by (7.31), the optimal dis-
patch is

P = §2(50—Ti1;3 = 400.0000
P = % = 250.0000
P = z—(%;)—;g? = 150.0000
(b) From (7.28), the necessary conditions for optimal dispatch are
-Z% =5.34+0.008P, = A
Z—IC;Z =5.5+0.012P, = )\
Z—gj— =5.8+40.018P; = A

subject to
P+ P+ P=Pp

To demonstrate the concept of equal incremental cost for optimal dispatch, we can
use MATLAB plot command to plot the incremental cost of each plant on the same
graph as shown in Figure 7.6. To obtain a solution, various values of ) could be
tried until one is found which produces ¥ P, = Pp. For each ANif Y P, < Pp,
we increase A otherwise, if 3. P, > Pp, we reduce ). Therefore, the horizontal
dashed-line shown in the graph is moved up or down until at the optimum point
A, X P; = Pp. For this example, with Pp = 800 MW, the optimal dispatch is
Py = 400, P, = 250, and P3 = 150 at A = 8.5$/MWh.

(c) For the numerical solution using the gradient method, assume the initial value
of A} = 6.0. From coordination equations, given by (7.31), Py, P,, and P; are

© 6.0-5.3
p _2Y—=99 4

A 2(0.004) 87.5000
1 _60-55 _

D = ——_2(0.006) = 41.6667
(1) _6.0-58 _ 1
37 2(0.009) ~ 1.

Since Pp = 800 MW, the error AP from (7.39) is

AP®M =800 — (87.5 + 41.6667 + 11.1111) = 659.7222
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6.5

0 100 200 300 00 500

P, MW

FIGURE 7.6
Hlustrating the concept of equal incremental cost production cost.

From (7.37)

659.7222 | 659.7222

) = = =
AX 263.8888

2.5

1 1 i
3(0.00d) T 3(0.006) T 3(0.000)

Therefore, the new value of A is
M2 =6.0+25=85

Continuing the process, for the second iteration, we have

(2 _ 85—53

= 2(0.004) = 400.0000
@ _ 8.5—-5.5 _ 9
= —2(0.006) = 250.0000
(29 _85—538 _

P = —2(0'009) 150.0000

and
AP® =800 — (400 + 250 + 150) = 0.0

Since AP = 0, the equality constraint is met in two iterations. Therefore, the
optimal dispatch are

P =400 MW
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P, =250 MW
P; =150 MW
A=85 $/MWh
and the total fuel cost is

Ct = 500 + 5.3(400) + 0.004(400)? + 400 + 5.5(250) + 0.006(250)2
+200 + 5.8(150) + 0.009(150)% = 6,682.5 $/h

To demonstrate the above method, the following simple program is written
for Example 7.4.

alpha =[500; 400; 200];
beta = [5.3; 5.5; 5.8]; gamma=[.004; .006; .009];

PD=800; .
DelP = 10; % Error in DelP is set to a high value
lambda = input(’Enter estimated value of Lambda = ’);
fprintf(’ ?)
disp([’ Lambda P1 P2 P3 DP’...
? grad Delambda’])
iter = 0; % Iteration counter
while abs(DelP) >= 0.001 % Test for convergence
iter = iter + 1; % No. of iterations
P = (lambda ~ beta)./(2*gamma); % Coordination equation
DelP =PD - sum(P); . % Residual
J = sum(ones(length(gamma), 1)./(2*gamma)) ;% Gradient sum
Delambda = DelP/J; % Change in variable
disp([lambda, P(1), P(2), P(3), DelP, J, Delambdal)
lambda = lambda + Delambda; % Successive solution
end

totalcost = sum(alpha + beta.*P + gamma.*P."2) 1

When the program is run, the result is

Enter estimated value of Lambda = 6

Lambda  P1 P2 P3 DP  grad Delambda i
6.0000 87.500 41.6667 11.1111 659.7222 263.8889 2.500 %
8.5000 400.000 250.0000 150.0000  0.0000 263.8889 0.000

totalcost =

6682.5
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A general program called dispatch is developed for the optimal dispatch prob-
lem. The program returns the system A, the optimal dispatch generation vector P,
and the total cost. The following reserved variables are required by the dispatch
program:

Pdt This reserved name must be used to specify the total 10ad in MW. If Pdt is
not specified the user is prompted to input the total load. If dispatch is used
following any of the power flow programs, the total load is automatically
passed by the power flow program.

cost This reserved name must be used to specify the cost function coefficients. The
coefficients are arranged in the MATLAB matrix format. Each row contains
the coefficients of the cost function in ascending powers of P.

mwlimits This name is reserved for the generator’s real power limits and are dis-
cussed in Section 7.5. This entry is specified in matrix form with the first
column representing the minimum value and the second column represent-
ing the maximum value. If mwlimits is not specified, the program obtains
the optimal dispatch of generation with no limits.

B BO B00 These names are reserved for the loss formula coefficient matrices and
are discussed in Section 7.6. If these variables are not specified, optimal
dispatch of generation is obtained neglecting losses.

The total generation cost of a thermal power system can be obtained with the
aid of the gencost command. This program can be used following any of the power
flow programs or the dispatch program, provided cost function matrix is defined.
Example 7.5
Neglecting generator limits and system losses, use dispatch program to obtain the
optimal dispatch of generation for thermal plants specified in Example 7.4.

We use the following command:

cost = [600 5.3 0.004
400 5.5 0.006
200 5.8 0.009];

Pdt = 800;

dispatch

gencost



276 7. OPTIMAL DISPATCH OF GENERATION

The result is

Incremental cost of delivered power (system lambda) = 8.5$/MWh
Optimal Dispatch of Generation:

400.0000
250.0000
150.0000
Total generation cost = 6682.50 $/h

7.5 ECONOMIC DISPATCH NEGLECTING
LOSSES AND INCLUDING GENERATOR LIMITS

The power output of any generator should not exceed its rating nor should it be be-
low that necessary for stable boiler operation. Thus, the generations are restricted
to lie within given minimum and maximum limits. The problem is to find the real
power generation for each plant such that the objective function (i.e., total produc-
tion cost) as defined by (7.23) is minimum, subject to the constraint given by (7.24)
and the inequality constraints given by

Pi(min) <SP < Pi(maa:) i=1,... y g (7.40) -

Where Pi(min) and Pi(imaz) are the minimum and maximum generating limits re-
spectively for plant 3.

The Kuhn-Tucker conditions complement the Lagrangian conditions to in-

clude the inequality constraints as additional terms. The necessary conditions for
the optimal dispatch with losses neglected becomes

_— = for Pi(min) <P < Pi(mam)

2 <A for P = Pimas) (7.41)

> A for F= Pz’(min)

The numerical solution is the same as before. That is, for an estimated )\, P,
are found from the coordination Equation (7.31) and iteration is continued until
2. P, = Pp. As soon as any plant reaches a maximum or minimum, the plant
becomes pegged at the limit. In effect, the plant output becomes a constant, and
only the unviolated plants must operate at equal incremental cost.
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Example 7.6

Find the optimal dispatch and the total cost in $/h for the thermal plants of Example
7.4 when the total load is 975 MW with the following generator limits (in MW):

200 < P £450
150 < P, <350
100 < P3 <225

Assume the initial value of A(!) = 6.0. From coordination equations given by

(7.31), P, P, and P; are

) _6.0-53 _
L= ——————2(0'004) 87.5000
a 60-55
| = ——2(0.006) = 41.6667
a _6.0-58

= ——— =11.1111
8 2(0.009)

Since Pp = 975 MW, the error AP from (7.39) is

APW = 975 — (87.5 + 41.6667 + 11.1111) = 834.7222

From (7.37)

834.7222 _834.7222

AN =

- 263.83883

1 T
+ 30008y t Z0009)
Therefore, the new value of \ is

A®) = 6.0 +3.1632 = 9.1632

Continuing the process, for the second iteration, we have

9.1632 — 5.3
PO = 2202 20 489804
1 2(0.004) 82.8947
9.1632 — 5.5
PO = 2222 200 305.2632
2 2(0.006) 305.263
9.1632 — 5.8
p@ _ 21632—-58 .
A 2(0.000) 186.8421

and

= 3.1632

AP@ = 975 — (482.8947 + 305.2632 + 186.8421) = 0.0
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Since AP = 0, the equality constraint is met in two iterations. However, P,
exceeds its upper limit. Thus, this plant is pegged at its upper limit. Hence P} =
450 and is kept constant at this value. Thus, the new imbalance in power is

AP® = 975 — (450 + 305.2632 + 186.8421) = 32.8947

From (7.37)

32.8947 32.8947

AN — _
o8 + o 1968589

= 0.2368

Therefore, the new value of \ is
AB) =9.1632 + 0.2368 = 9.4

For the third iteration, we have

P® = 450
3 _94-55
= — = 2
2 2(0.006) 525
@ _94-58 _
37 2(0.009) 200

and
AP® = 975 — (450 + 325 + 200) = 0.0

AP®) = 0, and the equality constraint is met and P, and P; are within their limits.
Thus, the optimal dispatch is

P, =450 MW
Py, =325 MW
P; =200 MW

A=94 $/MWh
and the total fuel cost is

Cy = 500 + 5.3(450) + 0.004(450)? + 400 + 5.5(325) + 0.006(325)°
+200 + 5.8(200) + 0.009(200)? = 8,236.25 $/h

The following commands can be used to obtain the optimal dispatch of gen-
eration including generator limits.
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cost = [600 5.3 0.004
400 5.5 0.006
200 5.8 0.009];
mwlimits=[{200 450
150 350
100 225]3;
Pdt = 975;
dispatch
gencost

The result is

Incremental cost of delivered power(system lambda) = 9.4$/MWh
Optimal Dispatch of Generation:

450
325
200

Total generation cost = 8236.25 $/h

7.6 ECONOMIC DISPATCH INCLUDING LOSSES

When transmission distances are very small and load density is very high, trans-
mission losses may be neglected and the optimal dispatch of generation is achieved
with all plants operating at equal incremental production cost. However, in a large
interconnected network where power is transmitted over long distances with low
load density areas, transmission losses are a major factor and affect the optimum
dispatch of generation. One common practice for including the effect of transmis-
sion losses is to express the total transmission loss as a quadratic function of the
generator power outputs. The simplest quadratic form is

g Ng

Pp=Y > P,BP (7.42)
i=1j=1 o

A more general formula containing a linear term and a constant term, referred to
as Kron’s loss formula, is

g Ng g

PL=) 3 PBj;P;+ El BoiP; + Boo (7.43)
i=1 j=1 =
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The coefficients B;; are called loss coefficients or B-coefficients. B-coefficients are
assumed constant, and reasonable accuracy can be expected provided the actual op-
erating conditions are close to the base case where the B-constants were computed.
There are various ways of arriving at a loss equation. A method for obtaining these
B-coefficients is presented in Section 7.7.

The economic dispatching problem is to minimize the overall generating cost
C;, which is the function of plant output

Ng
Ci=>.C
i=1
n
=) ai+ P+ 7P} (7.44)
i=1 :

subject to the constraint that generation should equal total demands plus losses,
ie.,

g

i=1
satisfying the inequality constraints, expressed as follows:
Pi(min) <PF< -P'i(ma:c) i=1,... )y g (7.46)

where Pj(;,;,) and Pj(maz) are the minimum and maximum generating limits, re-
spectively, for plant 7.

Using the Lagrange multiplier and adding additional terms to include the in-
equality constraints, we obtain

Ng ng
L=Ci+MPp+Pr~Y P+ titmaz)(Pi = Pitmaz)) +

1=1 i=1

g
> Himin)(Ps = Pigmin)) (7.47)
=1

The constraints should be understood to mean the Hi(maz) =0 when P; < Pj(,0)
and that p1;(,ni) = 0 when P; > Pi(min)- In other words, if the constraint is not
violated, its associated y variable is zero and the corresponding term in (7.47) does
not exist. The constraint only becomes active when violated. The minimum of this
unconstrained function is found at the point where the partials of the function to its
variables are zero.

oc
OF,;

=0 A (7.48)




7.6. ECONOMIC DISPATCH INCLUDING LOSSES 281

oc
S5 =0 (7.49)
oc
PPy =0 (7.50)
6:u"i(ma:r) (maz)
oL
= P; — Pyyin) = 51
Bty i) =0 73D

Equations (7.50) and (7.51) imply that P; should not be allowed to go beyond its
limit, and when P; is within its limits /4;(min) = Hi(mas) = 0 and the Kuhn-Tucker
function becomes the same as the Lagrangian one. First condition, given by (7.48),
results in '

0C;
oF;

oPL
OP;

+ (0 +

-1=0
Since

Ct=C1+C'2+"'+Cng

then
0C, _ dC;
oP,  dP;
and therefore the condition for optimum dispatch is
dC; 0Py, , ‘
A = =1,... 7.52
dP, + oP, A 1 N ( )

The term %—I;}: is known as the incremental transmission loss. Second condition,
given by (7.49), results in

g
Y Pi=Pp+Pp (7.53)
1=1

Equation (7.53) is precisely the equality constraint that was to be imposed.

Classically, Equation (7.52) is rearranged as

1 dC; .
—_— === i=1,...,n (7.54)
(14) aP, 9
or
L,-dc" =X i=1,...,m (1.55)

dp;
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where L; is known as the penalty factor of plant i and is given by

Li= ——p (7.56)

Hence, the effect of transmission loss is to introduce a penalty factor with a value
that depends on the location of the plant. Equation (7.55) shows that the minimum
cost is obtained when the incremental cost of each plant multiplied by its penalty
factor is the same for all plants.

The incremental production cost is given by (7.22), and the incremental trans-
mission loss is obtained from the loss formula (7.43) which yields

OP,
oF;

Ng
=2 ByP;+ By (1.57)
j=1

Substituting the expression for the incremental production cost and the incremental
transmission loss in (7.52) results in

Tig
Bi +2viPi +2)\) | BijPj + By A = A

=1
or
Vi & 1 Bi
(3 +8e) R+ Bop =3 (1- B - %) (7.58)
=1
i

Extending (7.58) to all plants results in the following linear equations in matrix
form

L4+Byy By - Bin, Py 1-Bo — %
Bs; 3:\3-{-322 cee Ban, Py 1| 1—DBp2— )\2 (759
: : : N : ‘
B"gl Bng? Z7;\—‘9—_'_3"517131 Pny 1—B0ng— P—}g'
or in short form
EP=D (7.60)

To find the optimal dispatch for an estimated value of A(1), the simultaneous
linear equation given by (7.60) is solved. In MATLAB use the command P = E\D.
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Then the iterative process is continued using the gradient method. To do this, from
(7.58), P; at the kth iteration is expressed as

"y (k k .plk)
p® = W0 - Bo) - - 208 Bl (7.61)
¢ 2(%' + /\(k)Bii) :

Substituting for P; from (7.61) in (7.53) results in

ng ,\(k)(l — Byi) — B — 22K > "y Bl j(k)
JFi
2(v; + /\(k)Bii)

= Pp + P® (7.62)

i=1
or
FOON® = pp + P (7.63)

Expanding the left-hand side of the above equation in Taylor’s series about an
operating point M) and neglecting the higher-order terms results in

(k)
FOY® 4 (%%l) AR = pj, 4 pF) (7.64)
or
k
ANB) — A_P(_)k_
(M)( )
dx
AP
dx
where
iyz <3pi)(k) 23 (1 — Boi) + Bl = 2% 20, By P} (7.66)
=\ 0A - i=1 2(y; + M%) By;)? .
and therefore,
AE+D) — 2\K) 4 ANK) (7.67)
where
g
AP® = pp 4 P _ 3 p® (7.68)

i=1
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The process is continued until A P*) is less than a specified accuracy.
If an approximate loss formula expressed by

g
P =) B;P} (7.69)

i=1

is used, B;; = 0, Bgg = 0, and solution of the simultaneous equation given by
(7.61) reduces to the following simple expression

P _ A®) — g,

W = 7.
¢ 2(’)’1' + /\(k)B“) ( 70)

and (7.66) reduces to

ig: (3131')(k) _ <> %+Bifi
N/ T Z 2y + AP By)?

(7.11)

i=1
Example 7.7

The fuel cost in $/h of three thermal plants of a power system are

C1 =200+ 7.0P; + 0.008P2 $/h
Cy = 180 + 6.3P, + 0.009P2 $/h
C3 = 140 + 6.8P; + 0.007P} $/h

where Py, Py, and P3 are in MW. Plant outputs are subject to the following limits

10 MW < 85 MW
10 MW < 80 MW
10 MW <70 MW

For this problem, assume the real power loss is given by the simplified expression

Prpuy = 0.0218PF ) +0.0228P% ,, + 0.0179P,,,

where the loss coefficients are specified in per unit on a 100-MVA base. Determine
the optimal dispatch of generation when the total system load is 150 MW.

In the cost function P; is expressed in MW. Therefore, the real power loss in
terms of MW generation is

100 100 100
= 0.000218P7 + 0.000228 P + 0.000179P MW

2 P. 2 2
P = [0.0218 (—Pi) +0.0228 (—l> +0.0179 (f"—) ] x 100 MW
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For the numerical solution using the gradient method, assume the initial value of
A1) = 8.0. From coordination equations, given by (7.70), Pl(l), P, and Pél) are

a 80-70

P = =51.3136 M
! 2(0.008 + 8.0 x 0.000218) 513136 MW
8.0-6.3
PV = . =78.5292 MW
27 2(0.009 + 8.0 x 0.000228) 7
Py = 80-638 =71.1575 MW

37 2(0.007 + 8.0 x 0.000179)
The real power loss is

P =0.000218(51.3136)2 +0.000228(78.5292) +0.000179(71.1575)% = 2.886
Since Pp = 150 MW, the error AP() from (7.68) is

APW =150 + 2.8864 — (51.3136 + 78.5292 + 71.1575) = —48.1139

From (7.71)
i (@ )<1> _ _0.008+0000218 x 7.0 _0.009 +0.000228 x 6.3
<<\ 9x/)  2(0.008 +8.0 x 0.000218)2 " 2(0.009 + 8.0 x 0.000228)?
0.007 + 0.000179 x 6.8
= 152.4924
+5(0.007 + 8.0 x 0.000179)2
From (7.65)
—48.1139
AN = o =
- Toz.4004 ~ o192

Therefore, the new value of ) is
A2 =8.0-0.31552 = 7.6845

Continuing the process, for the second iteration, we have

7.6845 — 7.0
PP = = 35.3728 MW
17 2(0.008 + 7.6845 x 0.000218) 353
@ 7.6845 — 6.3 643821 MW
R = 2(0.009 + 7.6845 x 0.000228) '
@) 7.6845 — 6.8
P = = 52.8015 MW
3 7 2(0.007 + 7.6845 x 0.000179) 5
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The real power loss is
P =0.000218(35.3728) +0.000228(64.3821)2 +0.000179(52.8015)2 = 1.717
Since Pp = 150 MW, the error AP(?) from (7.68) is

AP® = 150+1.7160— (35.3728+64.3821 +52.8015) = —0.8395
From (7.71)

i ( op; ><2) ___0.008 +0.000218 x 7.0 0.009 + 0.000228 x 6.3
OX/  2(0.008 + 7.684 x 0.000218)2 " 2(0.009 + 7.684 x 0.000228)2

0.007 + 0.000179 x 6.8
= 154.
510007 £ 7.685 x 0.000179)2 — 1°4:588

i=1

From (7.65)

(2 = ﬂ?ﬁ = —0.005431

AA 154.588

Therefore, the new value of \ is
A® = 7.6845 — 0.005431 = 7.679

For the third iteration, we have

7.679 — 7.0
B = = 35.0965 MW
1 = 2(0.008 + 7.679 x 0.000218)  >>-0965
3) 7.679 — 6.3
- — 64.1369 MW
2~ 3(0.009 +7.679 x 0.000228) 1309
Y = rom o8 = 52.4834 MW

8 7 2(0.007 + 7.679 x 0.000179)
The real power loss is
P =0.000218(35.0965)? +0.000228(64.1369)% +0.000179(52.4834)% =1.699
Since Pp = 150 MW, the error AP®) from (7.68) is
AP®) =150 + 1.6995 — (35.0965 -+ 64.1369 + 52.4834) = —0.01742
From (7.71)

i (6& >(3> 0008 + 0.000218 x 7.0 0.009 + 0.000228 x 6.3
dx/  2(0.008+ 7.679 x 0.000218)2 " 2(0.009 + 7.679 x 0.000228)2

0.007 + 0.000179 x 6.8
— 154.62
(0,007  7.679 x 0.000179)2 — 104624

i=1




7.6. ECONOMIC DISPATCH INCLUDING LOSSES 287

From (7.65)

AXB) = Zl%%z = —0.0001127

Therefore, the new value of ) is
A4 = 7.679 — 0.0001127 = 7.6789

Since A/\(3), is small the equality constraint is met in four iterations, and the opti-
mal dispatch for A = 7.6789 are

7.6789 — 7.0
P = = 35.0907 MW
17 2(0.008 + 7.679 x 0.000218) 207
7.6789 — 6.3
P = =64.1317 MW
27 2(0.009 + 7.679 x 0.000228) S17
P = 70789 - 6.8 = 52.4767 MW

37 2(0.007 + 7.679 x 0.000179)

The real power loss is

P =0.000218(35.0907)2 +0.000228(64.1317)2 +0.000179(52.4767)> = 1.699

and the total fuel cost is

Cy = 200 + 7.0(35.0907) + 0.008(35.0907)? + 180 + 6.3(64.1317) +
0.009(64.1317)2 + 140 + 6.8(52.4767) + 0.007(52.4767) = 1592.65 $/h

The dispatch program can be used to find the optimal dispatch of generation. The
program is designed for the loss coefficients to be expressed in per unit. The loss
coefficients are arranged in a matrix form with the variable name B. The base MVA
must be specified by the variable name basemva. If base mva is not specified, it is
set to 100 MVA.

We use the following commands

cost = [200 7.0 0.008
180 6.3 0.009
140 6.8 0.007];
mwlimits =[10 85
10 80
10 70];
150;

Pdt =
= [0.0218 0 0

B
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0 0.0228 0
0 0 0.0179];
basemva = 100;
dispatch
gencost

The result is

Incremental cost of delivered power(system lambda) =
7.678935$/MWh
Optimal Dispatch of Generation:

35.0907
64.1317
52.4767

Total system loss = 1.6991 MW
Total generation cost = 1592.65 $/h

Example 7.8

Figure 7.7 (page 295) shows the one-line diagram of a power system described
in Example 7.9. The B matrices of the loss formula for this system are found in
Example 7.9. They are given in per unit on a 100 MVA base as follows

0.0218 0.0093 0.0028
0.0093 0.0228 0.0017
0.0028 0.0017 0.0179

Bo = [0.0003 0.0031 0.0015 ]
By = 0.00030523

B

Cost functions, generator limits, and total loads are given in Example 7.7. Use dis-
patch program to obtain the optimal dispatch of generation.

We use the following commands.

cost = [200 7.0 0.008
180 6.3 0.009
140 6.8 0.007];
mwlimits =[10 85
10 80
10 70]1;
Pdt = 150;
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B= [0.0218 0.0093 0.0028
0.0093 0.0228 0.0017
0.0028 0.0017 0.0179];

BO = [0.0003 0.0031 0.0015];

B0OO = 0.00030523;

basemva = 100;

dispatch

gencost

The result is

Incremental cost of delivered power (system lambda)
7.767785 $/MWh
Optimal Dispatch of Generation:

33.4701
64.0974
55.1011

Total generation cost = 1599.98 $/h

7.7 DERIVATION OF LOSS FORMULA

One of the major steps in the optimal dispatch of generation is to express the system
losses in terms of the generator’s real power outputs. There are several methods
of obtaining the loss formula. One method developed by Kron and adopted by
Kirchmayer is the loss coefficient or B-coefficient method.

The total injected complex power at bus 7, denoted by S;, is given by

Si=Pi+jQi = Vil} (7.72)

The summation of powers over all buses gives the total system losses

n
PL+jQr =Y Vil} = Vi I, (1.73)

=1
where P, and @ are the real and reactive power loss of the system. V;,,; is the
column vector of the nodal bus voltages and I, is the column vector of the in-
jected bus currents. The expression for the bus currents in terms of bus voltage was
derived in Chapter 6 and is given by (6.2) as
Toys = Yous Vous (7.74)
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where Yp,; is the bus admittance matrix with ground as reference. Solving for Vi,
we have

Vb'u.s = Yb;; Ibus
= Zyuslous (7.75)

The inverse of the bus admittance matrix is known as the bus impedance matrix.
The bus admittance matrix is nonsingular if there are shunt elements (such as shunt
capacitive susceptance) connected to the ground (bus number 0). As discussed in
Chapter 6, the bus admittance matrix is sparse and its inverse can be expressed
as a product of sparse matrix factors. Actually Zp,,, which is also required for
short-circuit analysis, can be obtained directly by the method of building algorithm
without the need for matrix inversion. This technique is discussed in Chapter 9.
Substituting for V3, from (7.75) into (7.73), results in

PrL+jQL = [ZbusIbuS]TII;us
=1L .ZL I}, (7.76)

Zpus 1S a symmetrical matrix; therefore, Zb{;s = Zp,s, and the total system loss
becomes

PL+3Qr = IL  Zuus I}, (7.77)
The expression in (7.77) can also be expressed with the use of index notation as
n n
Py+jQr =Y LZjI} (7.78)
i=1j=1

Since the bus impedance matrix is symmetrical, i.e., Zij = Zj;, the above equation
may be rewritten as

) 1 n n
PL+jQr =3 DD Zi(LI + LI (7.79)
i=1j=1

The quantity inside the parentheses in (7.79) is real; thus the power loss can be
broken into its real and imaginary components as

1 n n
Pp=33 3 Ry(LL + LI}) (7.80)
i=1j=1 '
1 n n
QL= 5 Z > Xi(LI; + L;I}) (7.81)

i=1j=1
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where R;; and X;; are the real and imaginary elements of the bus impedance ma-
trix, respectively. Again, since R;; = Rj;, the real power loss equation can be
converted back into
n n
PL=> > LRyl} (7.82)

i=1 j=1
Or in matrix form, the equation for the system real power loss becomes
Py = IT Ry I}, (7.83)

where Ry, is the real part of the bus impedance matrix. In order to obtain the
general formula for the system power loss in terms of generator powers, we define
the total load current as the sum of all individual load currents, i.e.,

Iy +Ipg+- -+ I, =1Ip (7.84)

where ngy is the number of load buses and Ip is the total load currents. Now the
individual bus currents are assumed to vary as a constant complex fraction of the
total load current, i.e.,

Ik = 4Ip k=1,2,...,n4 (7.85)
or
I
0, = 1Lk (7.86)
Ip

Assuming bus 1 to be the reference bus (slack bus), expanding the first row in
(7.75) results in

Vi=2Znh + Zypla+---+ ZyIn (7.87)

If ng is the number of generator buses and ng4 is the number of load buses, the
above equation can be written in terms of the load currents and generator currents
as

g 4
Vi=) " Zulg+ > Zwlpk (7.88)
i=1 k=1

Substituting for I, from (7.85) into (7.88), we have

g nd
Vi=> Zulg+1Ip Y lZy

i=1 k=1
Tig
= Zulu + IpT (7.89)

i=1
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where

nq
T=> 2y (7.90)
k=1

If Iy is defined as the current flowing away from bus 1, with all other load currents
set to zero, we have

Vi=-Znl (7.9

Substituting for V; in (7.89) and solving for Ip, we have
1 & 1
Ip = —'T'i-:zlzli[gi - -J:Zqu (7.92)

Substituting for Ip from (7.92) into (7.85), the load currents become

O & l
Ik =73 Zuly — 7 Zul (7.93)
i=1
Let
23
=& 7.94
p T (1.94)
Then
g
Ik =pr Y Zuily + peZuilo (7.95)

i=1

Augmenting the generator currents with the above relation in matrix form, we have

In] [ 1 0 - 0 0 V[ In ]
I 0 1 - 0 0 I,
Ipn, 0o 0 - 1 0 I,
= 7.96
Ip, pZu p1Ziz - prZim, mZu (7.96)
Iy P22 p2Ziz -+ p2Zin, p2Zn
| Iy | L 21t prZiz 0 pkZing peZu J L Do

Showing the above matrix by C, (7.96) becomes
Iiys = Clpey (7.97)
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Substituting for Iy, in (7.83), we have

PL = [CInew}TRbusC*I;ew
= I7,,CT RypsC* I, (7.98)
If Sg; is the complex power at bus 7, the generator current is

Sgi _ Pyi — jQqi

I . = =
gt Vi* 'Vi*
1 5%
1 -
or
Iy = i Py : (7.100)
where
:Qgi
1-35%
b = V_*Pg’ (7.101)

2

Adding the current Iy to the column vector current Iy; in (7.100) results in

I Y1 0 - 0 0 P
I, 0 9 --- 0 O P,
: = : Do, : : : . (7.102)
Igng 0 0 - ¢ng 0 P, gng ‘
_Io_ _OO-~-OI0__1_
or in short form
Inew = ¥ P (7.103)
where
_ Py -
Fy
Py = : (7.104)
Pgng
b 1 -

Substituting from (7.103) for I,.,, in (7.98), the loss equation becomes

Pp, = [WPg1]TCT Ry s C** P,y
= PLYTCT Ry, ,C*¥* Py, (7.105)
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The resultant matrix in the above equation is complex and the real power loss is
found from its real part, thus

Py, = PG R[H]P (7.106)
where
H = 9TCT Ry, ,C*U* (7.107)

Since elements of the matrix H are complex, its real part must be used for comput-
ing the real power loss. It is found that H is a Hermitian matrix. This means that
H is symmetrical and H = H*. Thus, real part of H is found from

H*
wiH] = 2 u (7.108)
The above matrix is partitioned as follows
[ Bu  Biz -+ Bi, Bu/2
By Bys -+ Bay, Bg/2
R[H] = : : : : (7.109)
Bngl Bn92 e Bngng BOng /2
| Bo1/2 Bo2/2 -+ Bon,/2 By
Substituting for R[H] into (7.106), yields
[ Bn Blg s Blng B01/2 i —Pgl-
Bo1 Bz -+ Bap, Boa/2 || Fy2
Pp = [Py Py Pyn, 1] : s : : (7.110)
Bngl Bng2 tor Bngny BOng /2 Pgng
[ Bo1/2 Bo2/2 -+ Bop,/2 Boo || 1 |
or
Bi1 Bz -+ By, Py ]
By Bz -+ By Pyo
Pp = [Py Py - Pyn, | - :ng g
Bngl Bng2 e Bngng Pg‘ng ,
By1/2
Bga/2
+ [Py Py -+ Py, ] f’?/ + Boo (7.111)

Bon, /2
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To find the loss coefficients, first a power flow solution is obtained for the initial
operating state. This provides the voltage magnitude and phase angles at all buses.
From these results, load currents I;y, the total load current Ip, and #; are ob-
tained. Next the bus matrix Z, is found. This can be obtained by converting the
bus admittance matrix found from lfybus or directly from the building algorithm
described in Chapter 9. Next the transformation matrices C' and ¥ and H are ob-
tained. Finally the B-coefficients are evaluated from (7.109). It should be noted that
the B-coefficients are functions of the system operating state. If a new scheduling
of generation is not drastically different from the initial operating condition, the
loss coefficients may be assumed constant. A program named bloss is developed
for the computation of the B-coefficients. This program requires the power flow so-
lution and can be used following any of the power flow programs such as lfgauss,
Ifnewton, or decouple. The B-coefficients obtained are based on the generation in
per unit. When generation are expressed in MW, the loss coefficients are

Bij = B;jpu/SB  Boi = Boipu and Bgo = Byopu X SB
where Sp is the base MVA.

Example 7.9

Figure 7.7 shows the one-line diagram of a simple 5-bus power system with gen-
erator at buses 1, 2, and 3. Bus 1, with its voltage set at 1.06/0° pu, is taken as the
slack bus. Voltage magnitude and real power generation at buses 2 and 3 are 1.045
pu, 40 MW, and 1.030 pu, 30 MW, respectively. :

Vi = 1.0620°
30 MWl |Va| = 1.03
; 4 Capacitive susceptance
- 0.08+50.24 - .
17 Line %B
| somw 12 0.030
0.02+§0.06 0.08410.24 30Mvar 1-3 0.025
.Uo+70.
0.06+70.18 J 2-3 0.020
004012 2-4 0.020
Sasris i 2-5 0.015
2 {20MW |5 3-4 0.010
QT 10 Mvar 60 MW 4-5 0.025
40M 40 Mvar
[Va| = 1.045
FIGURE 7.7

One-line diagram of Example 7.9 (impedances in pu on 100-MVA base).
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The load MW and Mvar values are shown on the diagram. Line impedances and
one-half of the line capacitive susceptance are given in per unit on a 100-MVA
base. Obtain the power flow solution and use the bloss program to obtain the loss
coefficients in per unit.

We use the following commands

clear
basemva = 100; accuracy = 0.0001; maxiter = 10;

yA Bus Bus Voltage Angle -Load- ----Generator----Injected

% No code Mag. Degree MW Mvar MW Mvar Qmin Qmax Mvar
busdata=[1 1 1.06 0.0 0 0 0 O 10 50 ©
2 2 1.045 0.0 20 10 40 30 10 50 0
3 2 1.03 0.0 20 15 30 10 10 40 O
4 0 1.00 0.0 50 30 0 o 0 0 o0
5 0 1.00 0.0 60 40 0 o0 0 0 0];
YA Bus bus R X 1/2 B 1 for lines code or
% nl ar pu pu pu tap setting value
linedata=[1 2 0.02 0.06 0.030 1
1 3 0.08 0.24 0.025 1
2 3 0.06 0.18 0.020 1
2 4 0.06 0.18 0.020 1
2 5 0.04 0.12 0.015 1
3 4 0.01 0.03 0.010 1
4 5 0.08 0.24 0.025 1};
lfybus % form the bus admittance matrix
lfnewton % Power flow solution by Newton-Raphson method
busout % Prints the power flow solution on the screen
bloss % Obtains the loss formula coefficients

The result is

Power Flow Solution by Newton-Raphson Method
Maximum Power mismatch = 1.43025e-05
No. of iterations = 3

Bus Voltage Angle — ----—- Load--—-—- -~Generation-- Injected
No. Mag. Degree MW Mvar MW Mvar Mvar
1 1.060 0.000 0.000 0.00 83.051 7.271 0.00
2 1.045 -1.782 20.000 10.00 40.000 41.811 0.00
3 1.030 -2.664 20.000 15.00 30.000 24.148 0.00
4 1.019 -3.243 50.000 30.00 0.000 0.000 0.00
5 0.990 -4.405 60.000 40.00 0.000 0.000 0.00
Total 150.000 95.000 153.051 73.230 0.00
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B =
0.0218 0.0093 0.0028
0.0093 0.0228 0.0017
0.0028 0.0017 0.0179
BO =
0.0003 0.0031 0.0015
BOO =

3.0623e~-04
Total system loss = 3.05248 MW

As we have seen, any of the power flow programs, together with the bloss
and dispatch programs can be used to obtain the optimal dispatch of generation.
The dispatch program produces a variable named dpslack. This is the difference
(absolute value) between the scheduled slack generation determined from the coor-
dination equation, and the slack generation, obtained from the power flow solution.
A power flow solution obtained with the new scheduling of generation results in a
new loss coefficients, which can be used to solve the coordination equation again.
This process can be continued until dpslack is within a specified tolerance. This
procedure is demonstrated in the following example.

Example 7.10

The generation cost and the real power limits of the generators of-the power sys-
tem in Example 7.9 is given in Example 7.4 and Example 7.6. Obtain the optimal
dispatch of generation. Continue the optimization process until the difference (ab-
solute value) between the scheduled slack generation, determined from the coordi-
nation equation, and the slack generation, obtained from the power flow solution,
is within 0.001 MW.

We use the following commands

clear
basemva = 100; accuracy = 0.0001; maxiter = 10;

A Bus Bus Voltage Angle --Load-- --Generator-- Injected
h No code Mag. Degree MW Mvar MW Mvar Qmin Qmax Mvar
busdata={1 1 1.06 0.0 0 0O 0 © 10 50 0

2 2 1.045 0.0 20 10 40 30 10 50 0

3 2 1.03 0.0 20 15 30 10 10 40 0

4 0 1.00 0.0 5 30 0 O 0 0 0

5 0 1.00 0.0 60 40 0 O 0 0 -0} .
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A Bus bus R X 1/2 B 1 for lines code or
% nl nr pu pu pu tap setting value
linedata=[1 2 0.02 0.06 0.030 1

1 3 0.08 0.24 0.025 1

2 3 0.06 0.18 0.020 1

2 4 0.06 0.18 0.020 1

2 5 0.04 0.12 0.015 1

3 4 0.01 0.03 0.010 1

4 5 0.08 0.24 0.025 1];

cost = [200 7.0 0.008

mwlimits =[10 85

‘1fybus

lfnewton J Power flow solution by Newton-Raphson method

busout % Prints the power flow solution on the screen
bloss % Obtains the loss formula coefficients
gencost 4 Computes the total generation cost $/h
dispatch % Obtains optimum dispatch of generation

% dpslack is the difference (absolute value) between
% the scheduled slack generation determined from the

180 6.3 0.009
140 6.8 0.007];

10 80
10 70];

% forms the bus admittance matrix

h coordination equation, and the slack generation
% obtained from the power flow solution.

while dpslack > 0.001 % Test for convergence
lfnewton % New power flow solution
bloss % Loss coefficients are updated
dispatch %0ptimum dispatch of gen.with new B-coefficients
end

busout % Prints the final power flow solution
gencost J, Generation cost with optimum scheduling of gen.

The result is

Power Flow Solution by Newton-Raphson Method

Maximum Power mismatch = 1.430265e-05°
No. of iterations = 3
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Bus Voltage Angle = ----- Load-—=-- --Generation-- Injected
No. Mag. Degree MW Mvar MW Mvar Mvar
1 1.060 0.000 0.000 0.00 83.051 7.271 0.00
2 1,045 -1.782 20.000 10.00 40.000 41.811 0.00
3 1.030 -2.664 20.000 15.00 30.000 24.148 0.00
4 1.019 -3.243 50.000 30.00 0.000 0.000 0.00
5 0.990 -4.405 60.000 40.00 0.000 0.000 0.00
Total 150.000 95.000 153.051 73.230 0.00
B =
0.0218 0.0093 0.0028
0.0093 0.0228 0.0017
0.0028 0.0017 0.0179
BO =
0.0003 0.0031 0.0015
BOO =

3.0523e-04
Total system loss = 3.05248 MW

Total generation cost = 1633.24 $/h

Incremental cost of delivered power (system lambda) =
7.767608 $/MWh
Optimal Dispatch of Generation:

33.4558
64.1101
55.10056

Absolute value of the slack bus real power mismatch,
dpslack = 0.4960 pu

In this example the final optimal dispatch of generation was obtained in six itera-
tions. The results for final loss coefficients and final optimal dispatch of generation
is presented below

B =
0.0472 0.0130 0.0036
0.0130 0.0130 0.0010
0.0036 0.0010 0.0115
BO =

0.0047 0.0012 0.0004
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BOO =
3.0516e-04

Total system loss = 2.165691 MW

Incremental cost of delivered power (system lambda) =
7.759051 $/MWh

Optimal Dispatch of Generation:

23.5581
69.5593
59.0368

Absolute value of the slack bus real power mismatch,
dpslack = 0.0009 pu

Power Flow Solution by Newton-Raphson Method
Maximum Power mismatch = 1.90285e-08
No. of iterations = 4

Bus Voltage Angle = ----- Load----- ~--Generation-- Injected
No. Mag. Degree MW Mvar MW Mvar Mvar
1 1.060 0.000 0.000 0.000 23.649 25.727 0.00
2 1.045 -0.282 20.000 10.000 69.518 30.767 0.00
3 1.030 -0.495 20.000 15.000 58.990 14.052 0.00
4 1.019 -1.208 50.000 30.000 0.000 0.000 0.00
5 0.990 -2.729 60.000 40.000 0.000 0.000 0.00
Total 1560.000 95.000 152.154 70.545 0.00
Total generation cost = 1596.96 $/h

The total generation cost for the initial operating condition is 1,633.24 $/h and
the total generation cost with optimal dispatch of generation is 1, 596.96 $/h. This
results in a savings of 36.27 $/h.

Example 7.11

Figure 7.8 is the 26-bus power system network of Problem 6.14. Bus 1 is taken as
the slack bus with its voltage adjusted to 1.025/0° pu. The data for the voltage-
controlled buses is
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Slack
O,
1
2 E—l 3
Ia'e
g
@ | [
VA
sl s 13
18—-J— 6 7 4
[ ]
VAL
SV J o
YN lan
9 12 14 16
I | 19 | 10
11 25 |
23 | 24 15
22T —920
21
I
g1
FIGURE 7.8

One-line diagram of Example 7.11.
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REGULATED BUS DATA
Bus  Voltage  Min. Mvar Max. Mvar
No. Magnitude  Capacity Capacity
2 1.020 40 250
3 1.025 40 150
4 1.050 40 80
5 1.045 40 160
26 1.015 15 50

Transformer tap settings are given in the table below. The left bus number is as-
sumed to be the tap side of the transformer.

TRANSFORMER DATA

Transformer Tap Setting

Designation Per Unit
2-3 0.960
2-13 0.960
3-13 1.017
4- 8 1.050
4-12 1.050
6-19 0.950
7- 9 0.950

The shunt capacitive data is

SHUNT CAPACITOR DATA

Bus No. Mvar
1 4.0
4 2.0
5 5.0
6 2.0
9 3.0
11 1.5
12 2.0
15 0.5
19 5.0

Generation and loads are as given in the data prepared for use in the MATLAB
environment in the matrix defined as busdata. Code 0, code 1, and code 2 are used
for the load buses, the slack bus, and the voltage-controlled buses, respectively.
Values for basemva, accuracy, and maxiter must be specified. Line data are as
given in the matrix called linedata. The last column of this data must contain 1
for lines, or the tap setting values for transformers with off-nominal turn ratio. The
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generator’s operating costs in $/h, with P; in MW are as follow:

C} = 240 + 7.0P; + 0.0070P}
Cy = 200 + 10.0P; + 0.0095P%
C3 = 220 + 8.5P; - 0.0090P;
Cy4 = 200 + 11.0P; + 0.0090P7
Cs = 220 + 10.5P5 + 0.0080P2
Cas = 190 + 12.0Py + 0.0075P%

The generator’s real power limits are

GENERATOR REAL POWER LIMITS
Gen. Min. MW Max. MW

1 100 500

2 50 200

3 80 300

4 50 150

5 50 200

5 50 120

Write the necessary commands to obtain the optimal dispatch of generation
using dispatch. Continue the optimization process until the difference (absolute
value) between the scheduled slack generation, determined from the coordination
equation, and the slack generation, obtained from the power flow solution, is within
0.001 MW.

We use the following commands:

clear
basemva = 100; accuracy = 0.0001; maxiter = 10;

/A Bus Bus Voltage Angle --Load-- --Generator---Injected
YA No code Mag. Degree MW Mvar MW Mvar Qmin Qmax Mvar
busdata=[1 1 1.026 0.0 51 41 0 0 0 0 4
2 2 1.020 0.0 22 15 T9 O 40 250 0
3 2 1.026 0.0 64 50 20 O 40 150 0
4 2 1.060 0.0 25 10 100 O 25 80 2
5 2 1,045 0.0 50 30 300 O 40 160 5
6 0 1.00 0.0 76 29 0 o0 0 0 2
7 0 1.00 0.0 0 0 0 0 0 0 0
8 0 1.00 0.0 0 o0 0 0 0 0 0
9 0 1.00 0.0 89 50 0 O 0 0 3
10 0 1.00 0.0 0 o0 0 o 0 0 0
11 0 1.00 0.0 25 15 0 0 0 0 1.5
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12 0 1.00 0.0 89 48 0 o0 0 0 2
13 0 1.00 0.0 31 15 0 o0 0 0 0
14 0 1.00 0.0 24 12 0 o0 0 0 0
15 0 1.00 0.0 70 31 0 o0 0 0 0.5
16 0 1.00 0.0 55 27 0 o 0 0 0
17 0 1.00 0.0 78 38 0 0 0 0 0
18 0 1.00 0.0 153 67 0 o0 0 0 0
19 0 1.00 0.0 75 15 0 o0 0 0 5
20 0 1.00 0.0 48 27 0 o0 0 0 0
21 0 1.00 0.0 46 23 0 0 0 0 0
22 0 1.00 0.0 45 22 0 o0 0 0 0
23 0 1.00 0.0 25 12 0 o0 0 0 0
24 0 1.00 0.0 54 27 0 o 0 0 0
26 0 1.00 0.0 28 13 0 0 0 0 0
26 2 1.015 0.0 40 20 60 O 15 50 0];
% Bus bus R X 1/2 B 1 for lines code or
% nl ar pu pu pu tap setting value
linedata=[1 2 0.00055 0.00480 0.03000 1
1 18 0.00130 0.01150 0.06000 1
2 3 0.00146 0.05130 0.05000 0.96
2 7 0.01030 0.05860 0.01800 1
2 8 0.00740 0.03210 0.03900 1
2 13 0.00357 0.09670 0.02500 0.96
2 26 0.03230 0.19670 0.00000 1
3 13 0.00070 0.00548 0.00050 1.017
4 8 0.00080 0.02400 0.00010 1.050
4 12 0.00160 0.02070 0.01500 1.050
5 6 0.00690 0.03000 0.09900 1
6 7 0.00535 0.03060 0.00105 1
6 11 0.00970 0.05700 0.00010 1
6 18 0.00374 0.02220 0.00120 1
6 19 0.00350 0.06600 0.04500 0.95
6 21 0.00500 0.09000 0.02260 1
7 8 0.00120 0.00693 0.00010 1
7 9 0.00095 0.04290 0.02500 0.95
8 12 0.00200 0.01800 0.02000 1
9 10 0.00104 0.04930 0.00100 1
10 12 0.00247 0.01320 0.01000 1
10 19 0.05470 0.23600 0.00000 1
10 20 0.00660 0.01600 0.00100 1
10 22 0.00690 0.02980 0.00500 1
11 25 0.09600 0.27000 0.01000 1
11 26 0.01650 0.09700 0.00400 1
12 14 0.03270 0.08020 0.00000 1
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12 15 0.01800 0.05980 0.00000 1
13 14 0.00460 0.02710 0.00100 1
13 156 0.01160 0.06100 0.00000 1
13 16 0.01793 0.08880 0.00100 1
14 15 0.00690 0.03820 0.00000 1
15 16 0.02090 0.05120 0.00000 1
16 17 0.09900 0.06000 0.00000 1
16 20 0.02390 0.05850 0.00000 1
17 18 0.00320 0.06000 0.03800 1
17 21  0.22900 0.44500 0.00000 1
19 23 0.03000 0.13100 0.00000 1
19 24 0.03000 0.12500 0.00200 1
19 256 0.11900 0.22490 0.00400 1
20 21 0.06570 0.15700 0.00000 1
20 22 0.01500 0.03660 0.00000 1
21 24 0.04760 0.15100 0.00000 1
22 23 0.02900 0.09900 0.00000 1
22 24 0.03100 0.08800 0.00000 1
23 26 0.09870 0.11680 0.00000 1];
cost = [240 7.0 0.0070
200 10.0 0.0095
220 8.5 0.0090
200 11.0 0.0090
220 10.5 0.0080
190 12.0 0.0075];
mwlimits =[100 500
50 200
80 300
50 150
50 200
50  120];
1fybus % Forms the bus admittance matrix
lfnewton % Power flow solution by Newton-Raphson method
busout % Prints the power flow solution on the screen
bloss % Obtains the loss formula coefficients
gencost % Computes the total generation cost $/h
dispatch % Obtains optimum dispatch of generation

% dpslack is the difference (absolute value) between
% the scheduled slack generation determined from the
% coordination equation, and the slack generation

% obtained from the power flow solution.
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while dpslack>.001%Repeat till dpslack is within tolerance

lfnewton % New power flow solution
bloss % Loss coefficients are updated
dispatch %0Optimum dispatch of gen. with new B-coefficients
end

busout % Prints the final power flow solution

encost 7% Generation cost with optimum scheduling of gen.
g P g g

The result is

Power Flow Solution by Newton-Raphson Method
Maximum Power mismatch = 3.18289e-10
No. of iterations = 6

Bus Voltage Angle ~ --——- Load---—- --Generation-- Injected
No. Mag. Degree MW Mvar MW Mvar Mvar
1 1.0256 0.000 51.000 41.000 719.534 224.011 4.00
2 1.020 -0.931 22.000 15.000 79.000 125.354 0.00
3 1.035 -4.213 64.000 50.000 20.000 63.030 0.00
4 1.050 -3.582 25.000 10.000 100.000 49.223 2.00
5 1.045 1.129 50.000 30.000 300.000 124.466 5.00
6 0.999 -2.573 76.000 29.000 0.000 0.000 2.00
7 0.994 -3.204 0.000 0.000 0.000 0.000 0.00
8 0.997 -3.299 0.000 0.000 0.000 0.000 0.00
9 1.009 -5.393 89.000 50.000 0.000 0.000 3.00
10 0.989 -5.561 0.000 0.000 0.000 0.000 0.00
11 0.997 -3.218 25.000 15.000 0.000 0.000 1.50
12 0.993 -4.692 89.000 48.000 0.000 0.000 2.00
13 1.014 -4.430 31.000 15.000 0.000 0.000 0.00
14 1.000 -5.040 24.000 12.000 0.000 0.000 0.00
15 0.991 -5.538 70.000 31.000 0.000 0.000 0.50
16 0.983 -5.882 55.000 27.000 0.000 0.000 0.00
17 0.987 -4.985 78.000 38.000 0.000 0.000 0.00
18 1.007 -1.866 153.000 67.000 0.000 0.000 0.00
19 1.004 -6.397 75.000 15.000 0.000 0.000 5.00
20 0.980 -6.025 48.000 27.000 0.000 0.000 0.00
21 0.977 -5.778 46.000 23.000 0.000 0.000 0.00
22 0.978 -6.437 45.000 22.000 0.000 0.000 0.00
23 0.976 -7.087 25.000 12.000 0.000 0.000 0.00
24 0.968 -7.347 54.000 27.000 0.000 0.000 0.00
25 0.974 -6.775 28.000 13.000 0.000 0.000 0.00
26 1.015 -1.803 40.000 20.000 60.000 32.706 0.00
Total 1263.000 637.000 1278.534 618.791 25.00
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B =
0.0014 0.0015 0.0009 -0.0001 -0.0004 -0.0002
0.0015 0.0043 0.0050 0.0001 -0.0008 -0.0003
0.0009 0.0050 0.0315 -0.0000 -0.0020 -0.0016
-0.0001 0.0001 -0.0000 0.0029 -0.0006 -0.0009
-0.0004 -0.0008 -0.0020 -0.0006 0.0085 -0.0001
-0.0002 -0.0003 -0.0016 -0.0009 -0.0001 0.0176
BO =
-0.0002 -0.0008 0.0067 0.0001 0.0000 -0.0012
BOO =

0.0056
Total system loss = 15.53 MW

Total generation cost = 16760.73 $/h

Incremental cost of delivered power (system lambda) =
13.911780 $/MVWh

Optimal Dispatch of Generation:

474.1196
173.7886
190.9515
150.0000
196.7196
103.5772

Absolute value of the slack bus real power mismatch,
dpslack = 2.4541 pu

In this example the final optimal dispatch of generation was obtained in three itera-
tions. The results for final loss coefficients and final optimal dispatch of generation
is presented below

B =
0.0017 0.0012 0.0007 -0.0001 -0.0005 -0.0002
0.0012 0.0014 0.0009 0.0001 -0.0006 -0.0001
0.0007 0.0009 0.0031 0.0000 -0.0010 -0.0006
-0.0001 0.0001 0.0000 0.0024 -0.0006 -0.0008
-0.0005 -0.0006 -0.0010 -0.0006 0.0129  -0.0002
-0.0002 -0.0001 -0.0006 -0.0008 -0.0002 0.0150
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1.0e-03 *

-0.3908 -0.1297 0.7047 0.0591 0.2161 -0.6635
0.0056

Total system loss = 12.807 MW

Incremental cost of delivered power (system lambda) =
13.538113 $/Mwh
Optimal Dispatch of Generation:

447.6919

173.1938

263.4859

138
165
87

.8142
.5884
.0260

Absolute value of the slack bus real power mismatch,
dpslack = 0.0008 pu

Power Flow Solution by Newton-Raphson Method
Maximum Power mismatch = 2.33783e-05

No. of iterations = 3
Bus Voltage Angle ~— ----- Load----- --Generation-- Injected
No. Mag. Degree MW Mvar MW Mvar Mvar
1 1.025 0.000 51.000 41.000 447.611 250.582 4.00
2 1.020 -0.200 22.000 15.000 173.087 57.303 0.00
3 1.046 -0.639 64.000 50.000 263.363 78.280 0.00
4 1.050 -2.101 25.000 10.000 138.716 33.449 2.00
5 1.045 -1.453 50.000 30.000 166.099 142.890 5.00
6 1.001 -2.874 76.000 29.000 0.000 0.000 2.00
7 0.995 -2.406 0.000 0.000 0.000 0.000 0.00
8 0.998 -2.278 0.000 0.000 0.000 0.000 0.00
9 1.010 -4.387 89.000 50.000 0.000 0.000 3.00
10 0.991 -4.311 0.000 0.000 0.000 0.000 0.00
11 0.998 -2.824 25.000 15.000 0.000 0.000 1.50
12 0.994 -3.282 89.000 48.000 0.000 0.000 2.00
13 1.022 -1.261 31.000 15.000 0.000 0.000 0.00
14 1.008 -2.445 24.000 12.000 0.000 0.000 0.00
15 0.999 -3.229 70.000 31.000 0.000 0.000 0.50
16 0.990 -3.990 55.000 27.000 0.000 0.000 0.00
17 0.983 -4.366 78.000 38.000 0.000 0.000 0.00
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18 1.007 -1.884 153.000 67.000 0.000 0.000 0.00
19 1.005 -6.074 75.000 15.000 0.000 0.000 5.00
20 0.983 -4.759 48.000 27.000 0.000 0.000 0.00
21 0.977 -5.411 46.000 23.000 0.000 0.000 0.00
22 0.980 -5.326 45.000 22.000 0.000 0.000 0.00
23 0.978 -6.388 25.000 12.000 0.000 0.000 0.00
24 0.969 -6.672 54.000 27.000 0.000 0.000 0.00
265 0.975 -6.266 28.000 13.000 0.000 0.000 0.00
26 1.015 -0.284 40.000 20.000 86.939 27.892 0.00
Total 1263.000 637.000 1275.800 590.396 25.00
Total generation cost = 15447.72 $/h

The total generation cost for the initial operating condition is 16, 760.73 $/h and
the total generation cost with optimal dispatch of generation is 15,447.72 $/h. This
results in a savings of 1,313.01 $/h. That is, with this loading, the total annual
savings is over $11 million.

PROBLEMS

Find a rectangle of maximum perimeter that can be inscribed in a circle of
unit radius given by

g(z,y) =2° +3° —1=0
Check the eigenvalues for sufficient conditions.
Find the minimum of the function
f(z,y) = 2° + 29
subject to the equality constraint
gzyy)=z+2y+4=0
Check for the sufficient conditions.

Use the Lagrangian multiplier method for solving constrained parameter op-
timization problems to determine an isosceles triangle of maximum area that
may be inscribed in a circle of radius 1.
For a second-order bandpass filter with transfer function

wh
82 + 20wns + w2

H(s) =
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determine the values of the damping ratio and natural frequency, ¢ and w,,,
corresponding to a Bode plot whose peak occurs at 7071.07 radians/sec and
whose half-power bandwidth is 12,720.2 radians/sec.

Find the minimum value of the function
- f(z,y) = 2% + ¢
subject to the equality constraint
gz, y) =2 —6x—y?+17=0
Find the minimum value of the function
f(z,y) = a® +¢?
subject to one equality constraint
glz,y) =22 — 5z —y>+20=0
and one inequality constraint

wz,y) =2r+y>6

The fuel-cost functions in $/h for two 800 MW thermal plants are given by

C1 = 400 + 6.0P; + 0.004P?
Cy; =500+ BP, + P2

where P} and P, are in MW.

(a) The incremental cost of power A is $8/MWh when the total power de-
mand is 550 MW. Neglecting losses, determine the optimal generation of
each plant.

(b) The incremental cost of power A is $10/MWh when the total power de-
mand is 1300 MW. Neglecting losses, determine the optimal generation of
each plant.

(c) From the results of (a) and (b) find the fuel-cost coefficients 3 and ~y of
the second plant.

The fuel-cost functions in $/h for three thermal plants are given by

Cy = 350 + 7.20P; + 0.0040P}
Cy =500 + 7.30P; + 0.0025 P
Cs = 600 + 6.74P; + 0.0030P
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where Py, Py, and P3 are in MW. The governors are set such that generators
share the load equally. Neglecting line losses and generator limits, find the
total cost in $/h when the total load is

(i) Pp= 450 MW
(i) Pp = 745 MW
(iii) Pp = 1335 MW

Neglecting line losses and generator limits, determine the optimal scheduling
of generation for each loading condition in Problem 7.8

(a) by analytical technique, using (7.33) and (7.31).

(b) using Iterative method. Start with an initial estimate of A = 7.5 $/MWh.
(c) find the savings in $/h for each case compared to the costs in Problem 7.8
when the generators shared load equally.

Use the dispatch program to check your results.

Repeat Problem 7.9 (a) and (b), but this time consider the following genera-
tor limits (in MW)

122 < P, €400
260 < P, < 600
50 < P3 <445
Use the dispatch program to check your results.

The fuel-cost function in $/h of two thermal plants are

C1 = 320 + 6.2P; + 0.004P}
Cy = 200 + 6.0P, + 0.003P2

where P; and P are in MW. Plant outputs are subject to the following limits
(in MW)

50 < P, <250
50 < P, <350

The per-unit system real power loss with generation expressed in per unit on
a 100-MVA base is given by

Pppuy = 0.0125P],, + 0.00625P5 )

The total load is 412.35 MW. Determine the optimal dispatch of generation.
Start with an initial estimate of A = 7 $/MWh. Use the dispatch program to
check your results.
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7.12. The 9-bus power system network of an Electric Utility Company is shown in
Figure 7.9. The load data is tabulated below. Voltage magnitude, generation
schedule and the reactive power limits for the regulated buses are also tabu-
lated below. Bus 1, whose voltage is specified as V; = 1.03£0°, is taken as
the slack bus.

LOAD DATA
Bus Load

No. MW Myvar

1 0 0 GENERATION DATA

2 20 10 Bus Voltage Generation Myvar Limits
3 25 15 No. Mag. MW Min. Max.
4 10 5 1 1.03

5 40 20 2 1.04 80 0 250
6 60 40 7 1.01 120 0 100
7 10 5

8 80 60

9 100 80

The Mvar of the shunt capacitors installed at substations are given below

SHUNT CAPACITORS
Bus No. Myvar

3 1.0

4 3.0

FIGURE 7.9
One-line diagram for Problem 7.12.
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The line data containing the series resistance and reactance in per unit, and
one-half of the total capacitance in per unit susceptance on a 100 MVA base
is tabulated below.

LINE DATA |
Bus Bus R, X, 1B,
No. PU PU PU
0.018 0.054 0.0045
0.014 0.036 0.0030
0.006 0.030 0.0028
0.013 0.036 0.0030
0.010 0.050 0.0000
0.018 0.056 0.0000
0.020 0.060 0.0000
0.015 0.045 0.0038
0.002 0.066 0.0000
0.032 0.076 0.0000
0.022 0.065 0.0000

\OOO\D\IO\UI-PO)\OOONOZ

NN AWM B WNN =

The generator’s operating costs in $/h are as follows:

C1 = 240 + 6.7P, + 0.009P?
Cy = 220 4 6.1P, + 0.005P;
C7 = 240 + 6.5P; + 0.008 P?

The generator’s real power limits are

GENERATOR REAL POWER LIMITS
Gen. Min. MW Max. MW

1 50 200

2 50 200

7 50 100

Write the necessary commands to obtain the optimal dispatch of generation
using dispatch. Continue the optimization process until the difference (ab-
solute value) between the scheduled slack generation, determined from the
coordination equation, and the slack generation, obtained from the power
flow solution, is within 0.001 MW.




CHAPTER

3

SYNCHRONOUS MACHINE
TRANSIENT ANALYSIS

8.1 INTRODUCTION

The steady state performance of the synchronous machine was described in Chap-
ter 3. Under balanced steady state operations, the rotor mmf and the resultant stator
mmf are stationary with respect to each other. As a result, the flux linkages with
the rotor circuit do not change with time, and no voltages are induced in the rotor
circuits. The per phase equivalent circuit then becomes a constant generated emf
in series with a simple impedance. In Chapter 3, for steady state operation the gen-
erator was represented with a constant emf behind the synchronous reactance X.
For salient-pole rotor, because of the nonuniformity of the air gap, the generator
was modeled with direct axis reactance X4 and the quadrature axis reactance X
Under transient conditions, such as short circuits at the generator terminals,
the flux linkages with the rotor circuits change with time. This result in transient
currents in all the rotor circuits, which in turn reacts on the armature. For the tran-
sient analysis, the idealized synchronous machine is represented as a group of mag-
netically coupled circuits with inductances which depend on the angular position
of the rotor. The resulting differential equations describing the machine have time-
varying coefficients, and a closed form of solution in most cases is not feasible. A

314




8.2. TRANSIENT PHENOMENA 315

great simplification can be made by transformation of stator variables from phases
a, b, and c into new variables the frame of reference of which moves with the rotor.
The transformation is based on the so-called two-axis theory, which was pioneered
by Blondel, Doherty, Nickle, and Park [20, 61]. The transformed equations are
linear provided that the speed is assumed to be constant.

In this chapter, the voltage equation of a synchronous machine is first estab-
lished. Reference frame theory is then used to establish the machine equations with
the stator variables transformed to a reference frame fixed in the rotor (Park’s equa-
tions). The Park’s equations are solved numerically during balanced three-phase
short circuit. If the speed deviation is taken into account, transformed equations
become nonlinear and must be solved by numerical integration. In MATLAB, the
nonlinear differential equations of the synchronous machine in matrix form can be
simulated with ease. Also, there is the additional advantage that the original volt-
age equations can be used without the need for any transformations. In particular,
the numerical solution is obtained for the line-to-line and the line-to-ground short
circuits using direct-phase quantities.

Another objective of this chapter is to develop simple network models of the
synchronous generator for the power system fault analysis and transient stability
studies. For this purpose, the generator behavior is divided into three periods: the
subtransient period, lasting only for the first few cycles; the transient period cover-
ing a relatively longer time; and, finally, the steady state period. Thus, the generator
equivalent circuits during transient state are obtained.

8.2 TRANSIENT PHENOMENA

To better understand the synchronous machine transient phenomena, we first study
the transient behavior of a simple RL circuit. Consider a sinusoidal voltage v(t) =
Vim sin(wt+a) applied to a simple RL circuit at time ¢ = 0, as shown in Figure 8.1.

R L X(t=0
———MAA—N

i(t) —-
V(t) C)

FIGURE 8.1
A simple series circuit with constant R and L.
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The circuit consists of R in series with a constant L. The instantaneous voltage
equation for the circuit is

di(t)

Ri(t) + LT = Vp sin(wt + ) 3.1
The solution for the current may be shown to be
i(t) = I;sin(wt + a — v) = I,e™" sin(a — 7) (8.2)

where I, = Vip/Z, 7= L/R, v = tan ' wL/R, and Z = v/RZ + X2. The first
term is the steady state sinusoidal component. The second term is a dc transient
component known as dc offset which decays exponentially. The dc and sinusoidal
components are equal and opposite when t = 0, so that the condition for zero
initial current is satisfied. The magnitude of the dc component depends on the
instant of application of the voltage to the circuit, as defined by the angle o. The
dc component is zero when (a = ). This current waveform is shown in Figure
8.2(a). Similarly, the dc component will have a maximum initial value of V;, /Z
which is the peak value of the alternating component, if the circuit is closed when
a = 7 — 7/2 radians. The current waveform with maximum dc offset is shown
in Figure 8.2(b). If wL > R, then v ~ 7/2, so that circuit closure at voltage
maximum would give no dc component, and closure at voltage zero would cause
the maximum dc transient current to flow.

Example 8.1

In the circuit of Figure 8.1, let R = 0.125 §2, L = 10 mH, and the source voltage
be given by v(t) = 151sin(377¢+ ). Determine the current response after closing
the switch for the following cases.

(a) No dc offset.

(b) For maximum dc offset.

Z = 0.125 4 j(377)(0.01) = 0.125 + j3.77 = 3.772/88.1°

151
Im—m—40 A

and
L
T= E= 0.08 sec
From (8.2) the response is
i(t) = 40sin(wt + a — 88.1°) — 40e~/*% sin(a — 88.1°)

The response has no dc offset if switch is closed when o: = 88.1°, and it has the
maximum dc offset when a = 88.1° — 90° = —1.9°. The following commands
produce the responses shown in Figures 8.2(a) and 8.2(b).
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88.1%pi/180;

-1.9+pi/180;

gamma = 88.1%pi/180;

t = 0:.001:.3;

il = 40*sin(377*t+alfl-gamma)-40*exp(-t/.08) .*sin(alfl-gamma);
i2 = 40*sin(377*t+alf2-gamma)-40*exp(-t/.08) .*sin(alf2-gamma) ;
subplot(2,1,1), plot(t, il)

xlabel(’t, sec’), ylabel(’i(t)?)

subplot(2,1,2), plot(t, i2)

xlabel(’t, sec’), ylabel(’i(t)?’)

o

[

Hh

N
non

subplot(111)
40“” lﬂ T T T T
] |
i(t) 0
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60| - ]
40} '
ity 20 ]
0
V V U V
—20} i
_40 1 1 1 1 1
0 0.05 0.10 0.15 0.20 0.25 0.30
(b) t, sec
FIGURE 8.2

Current waveform, (a) with no dc offset, (b) with maximum dc offset.
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8.3 SYNCHRONOUS MACHINE TRANSIENTS

The synchronous machine consists of three stator windings mounted on the sta-
tor, and one field winding mounted on the rotor. Two additional fictitious windings
could be added to the rotor, one along the direct axis and one along the quadra-
ture axis, which model the short-circuited paths of the damper windings. These
windings are shown schematically in Figure 8.3.

AReference

i axis

4
y Qqadrature
; axis

Direct ™
axis

FIGURE 8.3
Schematic representation of a synchronous machine.

We shall assume a synchronously rotating reference frame (axis) rotating with
the synchronous speed w which will be along the axis of phase aatt = 0. If § is
the angle by which rotor direct axis is ahead of the magnetic axis of phase a, then

0=wt+5+g (8.3)

where § is the displacement of the quadrature axis from the synchronously rotating
reference axis and (4 + T) is the displacement of the direct axis.
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In the classical method, the idealized synchronous machine is represented as
a group of magnetically coupled circuits with inductances which depend on the an-
gular position of the rotor. In addition, saturation is neglected and spatial distribu-
tion of armature mmf is assumed sinusoidal. The circuits are shown schematically
in Figure 8.4.

TF (o

0 Vg

Vr :l:

0 Ve

FIGURE 84
Schematic representation of mutually coupled circuits.

The stator currents are assumed to have a positive direction flowing out of the
machine terminals. Since the machine is a generator, following the circuit passive
sign convention, the voltage equation becomes

- - - - - - - -

Vg r 00 0 0 0 ta Aa
Up 0r 0 0 0 O 1y Ab
Ve __100r 0 0 O ie | i Ac 8.4)
—vp | 0 00 r» 0 O i dt | AF ’
0 000 0 rp O iD AD
i 0 ] _000 0 0 TQ_LZ'Q_ _/\Q_
The above equation may be written in partitioned form as
[ Vabe ] _ _ [ Rape 0 ] [ iabe ] _ ii_ [ Agbe ] (8.5)
VFDQ 0 Rrpo irpg dt | AFDQ
where
—UR iF AF
VFDQ = 0 iFDQ = | ip )\FDQ =1| Ap etc. (8.6)
.0 iQ AQ
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The flux linkages are functions of self- and mutual inductances given by

Aa i Lgq Lab Lac LaF Lep LaQ iq
Ab Lya Lev Lye Lerp Lip Lig ip
)\c — Lca ch Lcc LcF LcD LcQ 7;c (8 7)
AF Lre Lpy Lpe Lrr Lrp Lpg iF '
AD Lpe Lpy Lp. Lpr Lpp Lpg ip

| Ao ] LLea Loy Lge Lgr Lgp Lgq | | ig |

or in compact form we have

[ Aabe ] _ [ Lss Lsr ] [ iabe ] ©.5)
AFDQ Lrs Lgrr || irpg '
8.3.1 INDUCTANCES OF SALIENT-POLE MACHINES

The self-inductance of any stator coil varies periodically from a maximum (when
the direct axis coincides with the coil magnetic axis) to a minimum (when the
quadrature axis is in line with the coil magnetic axis). The self-inductance L, for
example, will be a maximum for §# = 0, a minimum for # = 90° and maximum,
again for § = 180°, and so on. That is, L,, has a period of 180° and can be
represented approximately by cosines of second harmonics. Because of the rotor
symmetry, the diagonal elements of the submatrix Lgg are represented as

Loy =Lg+ L,,cos20
Lyy = Ls + Ly, cos 2(0 — 27 /3)
Lo = Lg + Ly, cos 2(0 + 27 /3) 8.9

where 6 is the angle between the direct axis and the magnetic axis of phase a,
as shown in Figure 8.3. The mutual inductances between any two stator phases
are also periodic functions of rotor angular position because of the rotor saliency.
We can conclude from the symmetry considerations that the mutual inductance
between phase a and b should have a negative maximum when the pole axis is lined
up 30° behind phase a or 30° ahead of phase b, and a negative minimum when it is _
midway between the two phases. Thus, the variations of stator mutual inductances,
i.e., the off-diagonal elements of the submatrix Lgg can be represented as follows.

Lop = Lpg = =My — Ly cos 2(0 + 7/6)
Ly = Lep = —Ms — Ly, cos 2(0 — 7 /2)
Lea = Log = —M; — Ly, cos 2(8 + 57/6) (8.10)
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All the rotor self-inductances are constant since the effects of stator slots and satu-
ration are neglected. They are represented with single subscript notation.

Lrrp=Lr Lpp=Lp Lgg=Lg 8.11)

The mutual inductance between any two circuits both in direct axis (or both in
quadrature axis) is constant. The mutual inductance between any rotor direct axis
circuit and quadrature axis circuit vanishes. Thus, we have

Lrp=Lpr=Mr Lpg=Lgr=0 Lpg=Lgp=0 (8.12)

Finally, let us consider the mutual inductances between stator and rotor circuits,
which are periodic functions of rotor angular position. Because only the space-
fundamental component of the produced flux links the sinusoidally distributed
stator, all stator-rotor mutual inductances vary sinusoidally, reaching a maximum
when the two coils in question align. Thus, their variations can be written as fol-
lows.

LaF = LFa = MFCOSO

pr = LFb = MFCOS(9 - 27(/3)

L. = Lpe = Mp cos(0 + 27/3)

Lop = Lpe = Mpcos@

Lyp = Lpy = Mp cos(6 — 27 /3)

L.p = Lp, = Mp cos(8 + 27/3)

Log = LQa = MQ sin

Lyg = Loy = Mg sin(0 — 27 /3)

Leg = Lge = Mgsin(6 + 2/3) 8.13)

The resulting differential equations (8.4) describing the behavior of the machine
have time-varying coefficients given by (8.9)-(8.13), and we are not able to use
Laplace transforms directly to obtain a closed form of solution.

8.4 THE PARK TRANSFORMATION

A great simplification can be made by transformation of stator variables from
phases a, b, and c into new variables the frame of reference of which moves with
the rotor. The transformation is based on the so called two-axis theory, which was
pioneered by Blondel, Doherty, Nickle, and Park [20, 61].

The transformed quantities are obtained from the projection of the actual vari-
ables on three axes; one along the direct axis of the rotor field winding, called the
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direct axis; a second along the neutral axis of the field winding, called the quadra-
ture axis; and the third on a stationary axis. For example, the three armature cur-
rents %, 15, and 1. are replaced by three fictitious currents with the symbols 4, iq,
and %o. They are found such that, in a balanced condition, when i, + 4 + i, = 0,
they produce the same flux, at any instant, as the actual phase currents in the arma-
ture. The third fictitious current i is needed to make the transformation possible
when the sum of the three-phase current is not zero.
The Park transformation for currents is as follows

i) 22 "z it 4]
ia | =4/2/3 | cos® cos(6—2r/3) cos(f+ 2m/3) 1 8.19)
sinf sin( — 27/3) sin(@ + 27/3) ic

i
or, in matrix notation
fodg = Piase (8.15)
Similarly for voltages and flux linkages, we have
Vodg = Pvgpe (8.16)
Aodg = PAgye (8.17)

The Park transformation matrix is orthogonal, i.e., P~! = P7 and thus, it is a
power invariant transformation matrix. For the inverse Park transformation matrix
we get

1/V2 cosf sin @
P™'=/2/3| 1/v/2 cos(6 —2n/3) sin(d — 21 /3) (8.18)
1/v/2 cos(6 +2r/3) sin(f + 2r/3)
We now wish to transform the time-varying inductances to a rotor frame of refer-

ence with the original rotor quantities unaffected. Thus, in (8.17) we augment the
P matrix with a 3 x 3 identity matrix U to get

Aodg } _ [ P O ] [ Aabe ] 8.19
[ /\FDQ “lo0o U /\FDQ (8.19)
or
SR
[ /\FDQ - 0 U )\FDQ (8.20)

Substituting in (8.8), we get

2 -l IO 2] e
0 U AFDQ Lrs Lgr 0 U irpg
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or

Lo 1=10 o[z w5 o]l ] o2
AFDQ 0 U Lrs Lgr 0 U irpo ’

Substituting for P, P! and the inductances given by (8.9)—(8.13), the above equa-
tion reduces to

[ Ao ]| (Lo O 0 0 0 0 17 i ]
Ad 0 Ly4 0 kMgp KMp O 14
M| _ 1O 0 L, 0 0 kMg 1q (8.23)
)\F o 0 kMF 0 LF MR 0 iF )
Ap 0 kMp 0 MR Lp 0 ip
| Ao | | O 0 kMg O 0 Lo || g |
where we have introduced the following new parameters
Ly=Ls—2M; (8.24)
3
Ly=Ls+ M, + §Lm (8.25)
Lg=Lg+ M — ng (8.26)

and k = 1/3/2.

Transforming the stator-based currents (igp.) into rotor-based currents ( ipgq), With
rotor currents unaffected, we obtain

iOdq — P O ] [ iabc ] 8 27
[iFDQ] [ 0 U ]| irpq @29
or .
iabc | [ Pﬁl 01] ia»dq ]
. = . 8.28
[ 1FDQ | L 0 U ] L1IFDQ ( )
and similarly for voltages, we get
Vabe | [Pl o] Vodq ]
= 8.29
[ VFDQ i 1 0 U 3L VFDQ ( )

Substituting (8.20), (8.28), and (8.29) into (8.5), we get

%o o) [vn] = =[5 ramo) [Fo o] [imse]
0 U} |[vrpo o 0 Rrpg 0 U] lirpg

d [P0 /\Odq ]
:i-i[ 0 U] l:)\FDQ (8.30)
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or
- P 82
VFDQ 0U 0 Rrpg 0 U} lirpg
_[PO]d [P O] Aogy
0Ujdt| 0 Ul |[Arpo

Evaluating the first term, and obtammg the derivative of the second term in (8.31),
yields

(8.31)

[VOdq ] _ [ Repe O ] [ iOdq [ Aodg ]
VFDQ 0 Rrpg iFDQ AFDQ
d )\gdq ]
- — 8.32
dt [ AFDQ (8.32)
Next, the expression for P%P‘1 can be written as
d_ . Ldbd -1 d__;
Pd P Pdt d0P P@P (8.33)

Substituting for P from (8.14), and for the derivative of P~ from (8.18), we get

d [1/v2  1/V2 1/v2 ]
P—P~! =2/3w | cosf cos(f — 2m/3) cos(6 + 27 /3)
dt | sin@ sin(f — 27/3) sin(6 + 27 /3)

[0 —sind cos @
0 —sin(f — 27/3) cos(d — 27/3)
|0 —sin(@ + 27/3) cos(8 + 27/3)

000
=wl|0 01
0-10

Substituting (8.23) and (8.34) into (8.32), the machine equation in the rotor frame
of reference becomes

(8.34)

—~ - - - - -

vg r 0 0 0 0 0 10
vy 0 r wi, 0 0 wkMg id
Vq _ 0 —de r —-wkMF —wkMD 0 iq
—vp|” |0 0O 0 rE 0 0 ip
0 0 0 0 0 D 0 3 D

| 0 | 0 0 0 0 0 rQ | L@
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(e 0 0 0 0 0 ] io |
0 Ly 0 kMpkMp 0 ig
10 0 L, 0 0 kMg|d i
0 kMp 0 Lp Mg O |at|ir (8.35)
0 kMD 0 MR LD 0 'iD
_0 0 kMQ 0 0 LQ_ LiQ_

We now make some observations regarding the nature of the above equations. The
most important one is that they have constant coefficients provided that speed is
assumed constant. Also, the first equation

) dig
Vg = —Tig — LO-Et—

is not coupled to the other equations. Therefore, it can be treated separately. The
variables vg, Lo, and i are known as the zero-sequence variables. The name orig-
inally comes from the theory of symmetrical components, as discussed in Chapter
10. Finally, we note that while the transformation technique is a mathematical pro-
cess, it provides valuable insight into internal phenomena and gives the effects of
transients. Furthermore, it provides physical meaning to the new quantities.

8.5 BALANCED THREE-PHASE SHORT CIRCUIT

Consider a three-phase synchronous generator operating at synchronous speed with
constant excitation. We will explore the nature of the three armature currents and
the field current following a three-phase short circuit at the armature terminals. The
machine is assumed to be initially unloaded, i.e.,

ia(0%) = i5(0*) = i.(0%) =0
With reference to (8.15), this condition results in
i0(0%) = ig(0") = i,(0F) =0
The initial value of the field current is

ir(0%) = :/—;’

For balanced three-phase short circuit at the terminals of the machine
Vo=vp=0c=0

With reference to (8.16), this condition results in

vo=v4=vy=0
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Since 79 = 0, the machine equation in the rotor reference frame following a three-
phase short circuit becomes

Vg Fr 0 0 wly wkMg id
—VUp 0 TR 0 0 0 iF
0 = — 0 0 D 0 0 ip
Ug —~wly —wkMp —wkMp T 0 iq
0 . 0 0 0 0 TQ 1Q

' Ly kMp kMp -0 0 14

kMrp L Mgp 0 0 d ip

— | kMp Mg Lp 0 0 s ip (8.36)
0 0 0 L, kMg iq
. 0 0 0 kMg Lg 1Q

This equation is in the state-space form and can be written in compact form as

. d,
v=—Ri- LEt-l 8.37)
or
ii-i =-L'Ri-L v (8.38)
dt )

If speed is assumed constant, the resulting state-space equation is linear and an
analytical solution can be obtained by the Laplace transform technique. However,
the availability of powerful simulation packages make it possible to simulate the
nonlinear differential equations of the synchronous machine easily in matrix form.
To consider the speed variation we need to include the dynamic equation of the
machine. This is a second-order differential equation known as the swing equation
which is described in Chapter 11. The swing equation can be expressed in the state-
space form as two first-order differential equation and can easily be augmented
with (8.36). Since the speed variation has very little effect in the momentary current
immediately following the fault, speed variation may be neglected.

Once a solution is obtained for the direct axis and quadrature axis currents,
the phase currents are obtained through the inverse Park transformation, i.e.,

igbe = P_liOdq (8.39)
Substituting for P~ from (8.18), and noting 4g = 0, the phase currents are

g = igcos @ + igsinf
iy = igcos(0 — 2m/3) + igsin(8 — 27/3) (8.40)
tc = tqcos(0 + 2m/3) + igsin(6 + 2m/3)
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MATLAB provides two M-files named ode23 and ode45 for numerical solution
of differential equations employing the Runge-Kutta-Fehlberg integration method.
ode23 uses a simple second and third order pair of formulas for medium accuracy
and oded5 uses a fourth and fifth order pair for higher accuracy. Synchronous ma-
chine simulation during balanced three-phase fault is demonstrated in the following
example.

Example 8.2

A 500-MVA, 30-kV, 60-Hz synchronous generator is operating at no-load with a
constant excitation voltage of 400 V. A three-phase short circuit occurs at the arma-
ture terminals. Use ode45 to simulate (8.36), and obtain the transient waveforms
for the current in each phase and the field current. Assume the short circuit is ap-
plied at the instant when the rotor direct axis is along the magnetic axis of phase a,
i.e., 8 = 0. Also, assume that the rotor speed remains constant at the synchronous
value. The machine parameters are

Generator Parameters for Example 8.2
Ly =00072H L;=0.0010H Lp=2500H
Lp=00068H Lg=00016H Mp=0.100H
Mp =0.0054H Mg=00026H Mzr=0.125H
r=00020Q rp=04000Q 7rp=0.0150Q
rqg =0.0150Q Ly =0.0010H '

The dc field voltage is VF = 400 V. The derivatives of the state equation given
by (8.38), together with the coefficient matrices in (8.36), are defined in a function
file named symshort.m, which returns the state derivatives. The initial value of the
field current is

Ve 400

. .|.___-_________=
ip(0%) = = = 57 = 1000 A

and since the machine is initially on no-load
i0(0%) = ig(0%) = §4(0°) = 0

The following file chp8ex2.m uses ode45 to simulate the differential equations de-
fined in symshort over the desired interval. The periodic nature of currents neces-
sitates a very small step size for integration. The currents 74 and ¢4 are substituted
in (8.40) and the phase currents are determined.

VF = 400; rF = 0.4; iF0 = VF/rF;
f = 60; w=2.%pixf;
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d = 0; d=d*pi/180;

t0 = 0 ; tfinal = 0.80;

tspan =[t0, tfinall;

i0 = [0; iF0; 0; 0; 0 ]; % Initial currents

[t,i] = ode45(’symshort’,tspan,i0);

theta = wxt + d + pi/2;

id = i(:,1), iq = i(:,4), iF = i(:,2);

ia = sqrt(2/3)*(id.*cos(theta) + iq.*sin(theta));

ib = sqrt(2/3)*(id.*cos(theta-2*pi/3)+ iq.*sin(theta-2*pi/3));
ic = sqrt(2/3)*(id.*cos(theta+2*pi/3)+ iq.*sin(theta+2*pi/3));
figure(1), plot(t,ia), xlabel(’Time - sec.’), ylabel(’ia, A’)
title([’Three-phase short circuit ia, ’,’delta =’,num2str(d)])
figure(2), plot(t,ib), xlabel(’Time - sec.’), ylabel(’ib, A’)
title([’Three-phase short circuit ib, ’,’delta =’,num2str(d)])
figure(3), plot(t,ic), xlabel(’Time - sec.’), ylabel(’ic, A’)
title([’Three-phase short circuit ic, ’,’delta =’,num2str(d)])
figure(4), plot(t,iF), xlabel(’Time - sec.’), ylabel(’iF, A’)
title([’Three-phase short circuit iF,’,’delta = ’,num2str(d)])

Results of the simulations are shown in Figure 8.5.

Armature currents in the various phases vary with time in a rather complicated
way. Analysis of the waveforms show that they consist of

¢ A fundamental-frequency component.
s A dc component.

¢ A double-frequency component.

The fundamental-frequency component is symmetrical with respect to the
time axis. Its superposition on the dc component will give an unsymmetrical wave-
form. The degree of asymmetry depends upon the point of the voltage cycle at
which the short circuit takes place. The field current shown in Figure 8.5, like the
stator current, consists of dc and ac components. The ac component is decaying
and is comprised of a fundamental and a second harmonic. The second harmonic
components in the field current as well as the armature currents are relatively small
and are usually neglected. Furthermore, in Section 8.7 we see that during short cir-
cuit, the effective reactance of the machine may be assumed only along the direct
axis and very simple models are obtained for power system fault studies and tran-
sient stability analysis. Before we obtain these simplified models, we consider the
unbalanced short circuit of synchronous machine.
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Three-phase short circuit ¢,, 0 =0
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FIGURE 8.5
Balanced three-phase short-circuit current waveforms.
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8.6 UNBALANCED SHORT CIRCUITS

Most frequent faults on synchronous machines are phase-to-phase and phase-to-
neutral short circuits. These unbalanced faults are most difficult to analyze. The
d-¢-0 model is not well suited for the study of unbalanced fault and requires further
transformation. The analytical solution becomes exceptionally complicated and at
the end of it all the solutions are still only approximate. In the numerical solution
the original voltage equations can be used without the need for any transforma-
tions. In the following section the machine equations are developed in direct-phase
quantities for simulation of the synchronous machine for the line-to-line and the
line-to-ground short circuits.

8.6.1 LINE-TO-LINE SHORT CIRCUIT
For a solid short circuit between phases a and b,
vp=v=0
and
iy = —i,

Since phase a is not involved in the short circuit and the generator is initially on
no-load, i, = 0, thus

=1tg+1+2.=0

and from (8.35), vp = 0. Substituting the above conditions into (8.15) and (8.16)
yields

vgsin® — vgcos =0 (8.41)

and
iqg = V2iysin @ (8.42)
ig = V2ipcos § (8.43)

Derivatives of the direct axis and the quadrature axis currents are

% = \/5% sin @ + v/2 wip cos 8 (8.44)

dig di o
-9 _ okl - 8.45
ot V2 o O 6 — V2 wiysin§ (8.45)
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»

Substituting (8.42)—(8.45) into (8.36) and applying (8.41) to the first and fourth
equations in (8.36), the voltage equation for a line-to-line fault in direct-phase
quantities is obtained.

—up
O —
0 =
0
[ V2kwMp cos 8 TR 0 0 KN
V2kwMp cos 8 D 0 0 iR
- V2kwM¢ sin 8 0 0 rQ ip
V2[r + w(Lq — Lq))sin20 kwMpcos@ kwMpcosd kwMgsinf | Liq
I V2kM;p sin @ Lp Mg 0 4 ]
V2kMp sin 8 Mp Lp 0 d |ir
- —v/2kMg cos 8 0 0 Lo dt |ip
_\/2_(Ld sin%@ + Lgcos?0) kMpsin@ kMpsin —kMgcosf | 2q |
(8.46)

This equation is in the state-space form and is written in compact form as (8.37).
The state derivatives is given by (8.38), which is suitable for numerical integration.

Example 8.3

The synchronous generator in Problem 8.2 is operating at no-load with a constant
excitation voltage of 400 V. A line-to-line short circuit occurs between phases b and
c at the armature terminals. Use ode45 to simulate (8.46), and obtain the waveforms
for current in phase b and the field current. Assume the short circuit is applied at the
instant when the rotor direct axis is along the magnetic axis of phase a, i.e., 6 = 0.
Also, assume that the rotor speed remains constant at the synchronous value.

The dc field voltage is VF = 400 V. The derivatives of the state equation given by
(8.38), together with the coefficient matrices in (8.46) are defined in a function file
named llshort.m which returns the state derivatives. The following file chp8ex3.m
uses ode45 to simulate the differential equation defined in llshort over the desired
interval. The current in phase b and the field current are determined and their plots
are shown in Figure 8.6.

VF = 400; rF = 0.4; iF0 = VF/rF;
f = 60; w = 2.%pix*f;

d = 0; d = d*pi/180;

t

0=0; tfinal = 0.80;
tspan = [t0, tfinall;
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»

io = [0; iF0; 0; 0;]; % Initial currents

[t,i] = ode45(’1lshort’, tspan, i0);

ib=i(:,1); iF=i(:,2);

figure(1), plot(t,ib), xlabel(’t, sec’), ylabel(’ib, A’)
title([’Line-line short circuit ib, ’,’delta = ?, num2str(d)])
figure(2), plot(t,iF), xlabel(’t, sec.’),ylabel (’iF, A’)
title([’Line-line short circuit iF, ’,’delta = ’,num2str(d)])

%105 Line-line short circuit 4, & =0
2-5 T L) ¥ T T ¥ T

iy, 1 .

19 01 02 03 04 05 06 07 os

Line-line short circuit ip, §=0

x10%

5.0 T T T T T T T

4.0 .
iFs 3.0 .
A

2.0 .

1.0 - 1

00 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8
t, sec

FIGURE 8.6
Line-to-line short-circuit current waveforms.
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8.6.2 LINE-TO-GROUND SHORT CIRCUIT

For a solid short circuit between phases a and ground
v =10
and with the machine initially on no-load
hp=14.=0

A convenient way to obtain the voltage equation for line-to-ground short circuit is
to start with (8.4), i.e., the machine voltage equation in direct phase quantities. Ap-
plying the short circuit condition to this equation and expressing the inductances in
terms of the more commonly d-g-0 reactances, the following equation is obtained
for the line-to-ground fault on phase a.

0
—UF .
0 =
0
(7 — 2wl sin20 —wMpsin —wMpsing wMgcosd g
_ —wMpsind TR 0 0 ip
—wMp sin 8 0 D 0 ip (8.47)
wMq cos 0 0 TQ iQ
[ Lg+Lmcos20 Mpcos@ Mpcosf Mgsind ig
_ MF cos @ LF MR 0 d ¥a
Mp cos 0 Mg Lp 0 dt |ip
Mgsiné 0 0 Lg Q
where
1
Lg = ;o;(L() + Lg+ Lq) (8.48)
1
Ly = §(Ld — Lg) (8.49)

Equation (8.47) is in the state-space form and is written in compact form as (8.37).
The state derivatives is given by (8.38) which is suitable for numerical integration.

Example 8.4

The synchronous generator in Problem 8.2 is operating at no-load with a constant
excitation voltage of 400 V. A line-to-ground short circuit occurs on phase g of the
armature terminals. Use oded5 to simulate (8.47), and obtain the waveforms for the
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current in phase a and the field current. Assume the short circuit is applied at the
instant when the rotor direct axis is along the magnetic axis of phase a,ie.,d =0,
Also, assume that the rotor speed remains constant at the synchronous value.

The dc field voltage is V; = 400 V. The derivative of the state equation
given by (8.38), together with the coefficient matrices in (8.47), are defined in a
function file named Igshort.m which returns the state derivatives. The following
file chp8ex4.m uses ode45 to simulate the differential equation defined in lgshort
over the desired interval. The phase and the field currents are determined and their
plots are shown in Figure 8.7.

%105 Line-line short circuiti,, 6 =10
1 1 T T T T T T

1 B

15,0.5 H J

0T 0z 03 04 05 os o7 os

Line-ground short circuit ip, =0 .
3-0 4 T T T T T T

0.3 0.4 0.5 0.6 0.7 0.8

i, sec

FIGURE 8.7
Line-to-ground short-circuit current waveforms.
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VF = 400; rF = 0.4; iFO = VF/rF;

f = 60; w = 2.%pixf;

d = 0; d = d*pi/180;

t0 = 0 ; tfinal = 0.80; tspan = [t0, tfinall;

i0o = [0; iF0; 0; 0;]; % Initial currents
tol = 0.0001; % accuracy

[t,i] = ode45(’lgshort’, tspan, i0, tol);

ja=i(:,1); iF=i(:,2);

figure(1), plot(t,ia), xlabel(’t, sec’), ylabel(’ia, A’)
title([’Line-ground short circuit ia,’,’delta =’, num2str(d)])
figure(2), plot(t,iF), xlabel(’t, sec’), ylabel (’iF, A’)
title([’Line-ground short circuit iF,’,’delta = » num2str(d)])

A three-phase model, which uses direct physical parameters, is well suited
for simulation on a computer, and it is not necessary to go through complex trans-
formations. The analysis can easily be extended to take the speed variation into
account by including the dynamic equations of the machine.

8.7 SIMPLIFIED MODELS OF SYNCHRONOUS
MACHINES FOR TRANSIENT ANALYSES

In Chapter 3, for steady-state operation, the generator was represented with a con-
stant emf behind a synchronous reactance X ;. For salient-pole rotor, because of the
nonuniformity of the air gap, the generator was modeled with direct axis reactance
X and the quadrature axis reactance X,. However, under short circuit conditions,
the circuit reactance is much greater than the resistance. Thus, the stator current
lags nearly 7 /2 radians behind the driving voltage, and the armature reaction mmf
is centered almost on the direct axis. Therefore, during short circuit, the effective
reactance of the machine may be assumed only along the direct axis.

The three-phase short circuit waveform shown in Figure 8.5 shows that the
ac component of the armature current decays from a very high initial value to the
steady state value. This is because the machine reactance changes due to the effect
of the armature reaction. At the instant prior to short circuit, there is some flux on
the direct axis linking both stator and rotor, due only to rotor mmf if the machine is
on open circuit, or due to the resultant of rotor and stator mmf if some stator current
is flowing. When there is a sudden increase of stator current on short circuit, the
flux linking stator and rotor cannot change instantaneously due to eddy currents
flowing in the rotor and damper circuits, which oppose this change. Since, the
stator mmf is unable at first to establish any armature reaction, the reactance of
armature reaction is negligible, and the initial reactance is very small and similar
in value to the leakage reactance. As the eddy current in the damper circuit and
eventually in the field circuit decays, the armature reaction is fully established. The
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armature reaction which is produced by a nearly zero power factor current provides
mostly demagnetizing effect and the machine reactance increases to the direct axis
synchronous reactance.

For purely qualitative purposes, a useful picture can be obtained by thinking
of the field and damper windings as the secondaries of a transformer whose primary
is the armature winding. During normal steady state conditions, there is no trans-
former action between stator and rotor windings of the synchronous machine as
the resultant field produced by the stator and rotor both revolve with the same syn-
chronous speed. This is similar to a transformer with open-circuited secondaries,
For this condition, its primary may be described by the synchronous reactance Xq.
During disturbance, the rotor speed is no longer the same as that of the revolving
field produced by stator windings resulting in the transformer action. Thus, field
and damper circuits resemble much more nearly as short-circuited secondaries,
The equivalent circuit for this condition, referred to the stator side, is shown in
Figure 8.8. Ignoring winding resistances, the equivalent reactance of Figure 8.8,

Xe
O Y'Y

O—

FIGURE 8.8
Equivalent circuit for the subtransient period.

known as the direct axis subtransient reactance, is

1 11

+ —_—
Xeda X5 Xk

XU = X, +( (8.50)

If the damper winding resistance Ry is inserted in Figure 8.8 and the Thévenin’s
inductance seen at the terminals of Ry, is obtained, the circuit time constant, known
as the direct axis short circuit subtransient time constant, becomes

Xea+ (5 + 55+ 55) ™!
Ry

"
Tg =

(8.51)

In (8.51) reactances are assumed in per unit and, therefore, they have the same
numerical values as inductances in per unit. For a 2-pole, turbo-alternators Xy
may be between 0.07 and 0.12 per unit, while for water-wheel alternators the range
may be 0.1 to 0.35 per unit. The direct axis subtransient reactance X /! is only used
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in calculations if the effect of the initial current is important, as for example, when
determining the circuit breaker short-circuit rating.

Typically, the damper circuit has relatively high resistance and the direct
axis short circuit subtransient time constant is very small, around 0.035 second.
Thus, this component of current decays quickly. It is then permissible to ignore the
branch of the equivalent circuit which takes account of the damper windings, and
the equivalent circuit reduces to that of Figure 8.9.

Xe
oYY

o—

3 Xad 3 X f
FIGURE 8.9

Equivalent circuit for the transient period.

Ignoring winding resistances, the equivalent reactance of Figure 8.9, known
as the direct axis short circuit transient reactance, is

1 1\

Xi=Xo+ + = (8.52)
X ad X f

If the field winding resistance Ry is inserted in Figure 8.9, and the Thévenin’s

inductance seen at the terminals of Ry is obtained, the circuit time constant, known

as the direct axis short circuit transient time constant, becomes

Xp (G + )
Ry
The direct axis transient short circuit reactance X; may lie between 0.10 to 0.25
per unit. The short circuit transient time constant 7 is usually in order of 1 to 2
seconds.
The field time constant which characterizes the decay of transients with the

armature open-circuited is called the direct axis open circuit transient time con-
stant. This is given by

= (8.53)

Tao = (8.54)

Ry
Typical values of the direct axis open circuit transient time constant are about 5
seconds. 7} is related to 7, by

1= 32 | (8.55)
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Finally, when the disturbance is altogether over, there will be no hunting of
the rotor, and, hence there will not be any transformer action between the stator
and the rotor, and the circuit reduces to that of Figure 8.10.

Xe
O Y Y Y

§ X ad
FIGURE 8.10
Equivalent circuit for the steady state.

o—

The equivalent reactance becomes the direct axis synchronous reactance, given by
Xg=Xo+ Xaq (8.56)

Similar equivalent circuits are obtained for reactances along the quadrature axis.
These reactances X, Xy, and X, may be considered for cases when the circuit re-
sistance results in a power factor appreciably above zero and the armature reaction
is not necessarily totally on the direct axis.

The fundamental-frequency component of armature current following the
sudden application of a short circuit to the armature of an initially unloaded ma-
chine can be expressed as

1 1 " ,
iac(t)=V2Ey [(X_g — X_,lz) e t7d 4 (3{1—5 - Xid) e tTa 4 -)%‘;} sin(wt+46) (8.57)
A typical symmetric trace of the short circuit waveform obtained for the data of
Example 8.5 is shown in Figure 8.11 (page 340).

It should be recalled that in the derivation of the above results, resistance was
neglected except in consideration of the time constant. In addition, in the above
treatment the dc and the second harmonic components corresponding to the decay
of the trapped armature flux has been neglected. It should also be emphasized that
the representation of the short-circuited paths of the damper windings and the solid
iron rotor by a single equivalent damper circuit is an approximation to the actual
situation. However, this approximation has been found to be quite valid in many
cases. The synchronous machine reactances and time constants are provided by the
manufacturers. These values can be obtained by a short circuit test described in the
next section.
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Example 8.5

A three-phase, 60-Hz synchronous machine is driven at constant synchronous speed
by a prime mover. The armature windings are initially open-circuited and field volt-
age is adjusted so that the armature terminal voltage is at the rated value (i.e., 1.0
per unit). The machine has the following per unit reactances and time constants.

X7 =0.15pu 14 = 0.035 sec
X! =0.40 pu 7y = 1.0 sec
Xg =120pu

a) Determine the steady state, transient and subtransient short circuit currents.

b) Obtain the fundamental-frequency waveform of the armature current for a three-
phase short circuit at the terminals of the generator. Assume the short circuit is
applied at the instant when the rotor direct axis is along the magnetic axis of phase
a,ie.,d =0

Eq 1.0
I = — = ——— ==},
d X, 1 0.8333 pu
Ey 1.0
== =-""=2,
4= X170 5 pu
By 1.0
II/ = e——— N eeem—— T .
i~ %= 6.666 pu

To obtain the short circuit waveform, we write the following commands.

w0 = 2xpi*60;

EO = 1.0; delta = 0;

Xd2dash = 0.15;

Xddash = 0.4;

Xd = 1.2;

tau2dash = 0.035; taudash = 1.0;

t=0:1/(4%240):1.0;

iac = sqrt(2)*E0*((1/Xd2dash~1/Xddash)*exp(-t/tau2dash)+...
(1/Xddash-1/Xd) *exp (-t/taudash) + 1/Xd).*sin(wO*t + delta);
plot(t, iac), xlabel(’t, sec’), ylabel(’iac, A’)

end

The result is shown in Figure 8.11.

The trace is obtained up to 1 second. If the simulation period is extended to
about 57'& = 5.0 seconds, the short circuit will reach to its steady state with a peak
value of Iy, ... = V2 Eo/Xaq = v2(1.0)/1.2 = 1.1785 per unit.
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FIGURE 8.11
The 60-Hz component of the short-circuit current of a synchronous generator.

8.8 DC COMPONENTS OF STATOR CURRENTS

In the expression for the armature current as given by (8.57), the unidirectional
transient component has not been taken into account. As seen from consideration
of the simple RL circuit of Figure 8.1, there will in general be a dc offset depending
on when the voltage is applied. Similarly, in the synchronous machine, the dc offset
component depend on the instantaneous value of the stator voltage at the time of
the short circuit. The rotor position is given by § = wt+d§+n /2. The dc component
depends on the rotor position § when the short circuit occurs at time ¢t = 0. The
time constant associated with the decay of the dc component of the stator current is
known as the armature short circuit time constant, 7,. Most of the decay of the dc
component occurs during the subtransient period. For this reason the average value
of the direct axis and quadrature axis subtransient reactances is used for finding 7,.
It is approximately given by

_ X;'+X,;’

Ta T (8.58)

Typical values of the armature short circuit time constant is around 0.05 to 0.17
second.

Since the three-phase voltages are each separated by 27/ 3 radians, the amount
of the dc component of the armature current is different in each phase and depends
upon the point of the voltage cycle at which the short circuit occurs. The dc com-
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ponent for phase a is given by

I = \/ﬁi?, sing e 7 (8.59)
Xd

The superposition of the dc component on the fundamental frequency component
will give an asymmetrical waveform.

1 1 " 1 1 ’ 1
] t) = V2F, — i — —t/7, e — -t/7y : t
iasy(t) = V2Eq [(X('i’ X&) e a4 (Xé Xd) e + Xd] sin(wt + §)
+\/§£Z, sin §e /T (8.60)

The degree of asymmetry depends upon the point of the voltage cycle at which the
fault takes place. The worst possible transient condition is § = 7/2. The maximum
possible initial magnitude of the dc component is

Eo
Licinan = V2 57 (8.61)

Therefore, the maximum rms current (ac plus dc) at the beginning of the short
circuit is

2 2
E E,
Lsy = I} + 12, = \j <——XZ,> + (\/i—XZ,) (8.62)

from which
E
Lsy = V3 }2'% (8.63)
d
= V31

In practice, the momentary duty of a circuit breaker is given in terms of the asym-
metrical short circuit current.

Example 8.6

For the machine in Example 8.5, assume that a three-phase short circuit is applied
at the instant when the rotor quadrature axis is along the magnetic axis of phase a,
i.e., § = m/2 radians. Obtain the asymmetrical waveform of the armature current
for phase a. The armature short circuit time constant is 7, = 0.15 sec.

In the MATLAB program of Example 8.5, we make § = /2 and use (8.60) in place
of the i, statement. Running this example results in the waveform shown in Figure
8.12.
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FIGURE 8.12
Synchronous generator asymmetrical short-circuit current § = 7 /2.

8.9 DETERMINATION OF TRANSIENT CONSTANTS

A sudden three-phase short circuit is applied to the terminals of an unloaded gener-
ator and the oscillogram of the current in one phase is obtained. The test is repeated
until a symmetric waveform is obtained which does not contain the dc offset. This
occurs when the voltage is near maximum at the instant of fault. The machine
reactances Xj, X/, and X, and the time constants 7y and 7} are determined by
analyzing the oscillogram waveform as follow.

The waveform is divided into three periods: the subtransient period, lasting
only for the first two cycles, during which the current decrement is very rapid;
the transient period, covering a relatively longer time, during which the current
decrement is more moderate; and finally, the steady state period.

The no-load generated voltage Ej is obtained by measuring the phase volt-
age and expressing it in per unit. The direct axis synchronous reactance Xy is
determined from the part of the oscillogram where the envelope of the current has
become constant. Denoting this amplitude with Id(max) , the rms value of the steady

short circuit is Iy = T LT /+/2. From this the direct axis synchronous reactance
is found

Ey

Xg= I,

(8.64)
The peak steady short circuit current is subtracted from two points after approx-
imately the 10th cycle where the subtransient component has decayed. Dividing
these values by v/2 results in the following term
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FIGURE 8.13
Current difference logarithm, In As’ and In Ai”.

A = (I, — I)e 4
or
In Ai' =In(I} — I;) — t/75
=cd —-m't

If the points given by In A4’ are plotted against a linear time scale, a straight line
is obtained with y-intercept ¢ = In(I}; — I) and slope —m’, as shown in Figure
8.13. The rms transient component of current is obtained from

Iy=¢ + 14 (8.65)
Transient reactance and time constant are then obtained by
E
X)==2 (8.66)
I
and
, 1
A= (8.67)

To find the subtransient components, the peak current of the first two cycles
are divided by /2. Subtracting the steady short circuit current and the rms transient
currents found earlier from these points results in

A" = (I} — Ih)e ™t
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or

A" =In(I} — I}) — t/7!
— CI/ _ m”t

If the points given by In Ai" are plotted against a linear time scale, a straight line is
obtained with y-intercept ¢ = In(I] — I}) and slope —m”, shown in Figure 8.13,
The rms subtransient component of current is given by

I=e" +1, (8.68)

Subtransient reactance and time constant are

E
"= 7‘,1 (8.69)
d
and
1

The above procedure is demonstrated in the following example.

Example 8.7

A three-phase, 60-Hz synchronous machine is driven at constant synchronous speed
by a prime mover. The armature windings are initially open-circuited and field volt-
age is adjusted so that the armature terminal voltage is at the rated value (i.e., 1.0
per unit). The generator is suddenly subjected to a symmetrical three-phase short
circuit at the instant when direct axis is along the magnetic axis of phase q, i.e.,
& = 0. An oscillogram of the short-circuited current is obtained. The peak values
at the first two cycles, at the 20th and 21st cycles, and the steady value after a long
time were recorded as tabulated in the following table.

I'maz,pu | 87569 6.7363 ... 2.8893 28608 --- 1.1785
Time, sec | 0.0042 0.0208 --- 03208 0.3375 --- 5.0000

Determine the transient and the subtransient reactances and time constants.

The following statements are written with reference to the above procedure.

E0 = 1.0;
In=[8.7569 6.7363 2.8893 2.8608 1.1785];
t=[0.0042 0.0208 0.3208 0.3375 5.0000] ;
I =1Im/sqrt(2); % The rms value of the above envelope
id=I(5); % rms value of the steady short circuit
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Dt2=[t(3) t(d)]; % Time for 20th and 21st cycles
Di2=[1(3)-id I(4)-id];%Diff. between transient envelope and id
LDi2= log(Di2); /#Natural log of the above two points
c2=polyfit(Dt2, LDi2, 1);
#Finds coefficients of a lst-order polynomial
% i.e. the slope and intercept of a straight line
jddash=(exp(c2(2))+id) % rms value of the transient current
Xddash=E0/iddash % Direct axis transient reactance
taudash=abs(1/c2(1)) /Direct axis sc transient time constant
Di=(iddash-id)*[exp(-t(1)/taudash) exp(-t(2)/taudash)];
Di1=[I(1)-Di(1)-id I(2)-Di(2)-id]l; % Subtransient envelope
LDil=log(Di1);
Dt1 =[t(1) t(2)]; % Natural log of the first two points
ci=polyfit(Dt1, LDil, 1);
#Finds coefficients of a 1st-order polynomial
% i.e. the slope and intercept of a straight line

id2dash=exp(c1(2))+iddash Y%rms value of subtransient current
Xd2dash= E0/id2dash % Direct axis subtransient reactance
tau2dash=abs(1/c1(1))% direct axis sc subtransient time const.

t=0:.005:.045;

fit2 = polyval(c2, t); % line C2 evaluated for all values of t
fitl = polyval(ci, t); % line Cl evaluated for all values of t
plot(t, fitl, t, £fit2),grid % Logarithmic plot of id’’ and id’
ylabel(’1n(I) pu’ ) % intercepts are 1n(Id’’) and 1n(Id’)
xlabel(’t, sec’) hslopes are reciprocal of time constants

The result is

I} =25038 pu  X;=0.3994; pu 75 =0.9941 sec
I7=6.6728 pu  XJ =0.1499; pu 7, = 0.0348 sec

Example 8.8

A 100-MVA, 13.8-kV, 60-Hz, Y-connected, three-phase synchronous generator is
connected to a 13.8-kV/220-kV, 100-MVA, A-Y connected transformer. The reac-
tances in per unit to the machine’s own base are

Xg=10pu X;=0.25pn XJ=0.12pu

and its time constants are
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7o =0.25sec 77/ =04sec 7);=11pu

The transformer reactance is 0.20 per unit on the same base. The generator is op-
erating at the rated voltage and no-load when a three-phase fault occurs at the
secondary terminals of the transformer as shown in Figure 8.14.

D X ¢
DA

13.8/220 kV

13.8kV C_D X

FIGURE 8.14
One-line diagram for Example 8.8.

(2) Find the subtransient, transient, and the steady state short circuit currents in per
unit and actual amperes on both sides of the transformer.

(b) What is the maximum rms current (ac plus dc) at the beginning of the fault?
(c) Obtain the instantaneous expression for the short circuit current including the
dc component. Assume § = 7/2 radians.

(a) The base current on the generator side is’

Joo =SB _ 100x10°
B BVe V3138

The base current on the secondary side of the transformer is

=4184 A

13.8
Iy = 290 ——(4184) = 262.4 A
the subtransient, transient and the steady state short circuit currents are
1.0
— =312 = tor sid
I = 0121032 3.125 pu = 13,075 A on the generator side
= 820 A on the 220-kV side
g = 6%—2_0_2. =222 pu=9,288.5 A on the generator side
= 582.5A on the 220-kV side
I;= %_{:0—0—2 = 0.833 pu=3,486.6 A on the generator side

= 218.6 A on the 220-kV side

s N e s
Ll e s b
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(b) The maximum rms current (ac plus dc) at the beginning of the fault is
Isy = V31, = V3(3.125) = 5.4 pu = 22,646 A on the generator side

(c) The instantaneous short circuit current including the dc component from (8.60),
for § = m/2is

’L(t) = ﬁ[(Ig‘I(,i)e-t/OA‘i' (I‘Ii_Id)e—t/l.l +Id] sin(377t + 7]./2) + \/§Ige_t/°'25
or
i(t) = [1.28¢72% 4 1.96e~ %% + 1.18]sin(377¢ + 7/2) + 4.42¢™* pu

Use MATLARB to obtain a plot of i(t).

8.10 EFFECT OF LOAD CURRENT

If the fault occurs when the generator is delivering a prefault load current, two
methods might be used in the solution of three-phase symmetrical fault currents.

(a) Use of internal voltages behind reactances

When there is a prefault load current, three fictitious internal voltages E”, E',
and Ey may be considered to be effective during the subtransient, transient, and
the steady state periods, respectively. These voltages are known as the voltage be-
hind subtransient reactance, voltage behind transient reactance, and voltage be-
hind synchronous reactance. Consider the one-line diagram of a loaded generator
shown in Figure 8.15(a). The internal voltages shown by the phasor diagram in
Figure 8.15(b) are given by

(a)

FIGURE 8.15
(a) One-line diagram of a loaded generator, (b) phasor diagram.
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E'=V 4 ngIL 8.71)
E = V+jX¢liIL
E=V+ ;X411

Example 8.9

In Example 8.8, a three-phase load of 100 MVA, 0.8 power factor lagging is con-
nected to the transformer secondary side as shown in Figure 8.16. The line-to-line
voltage at the load terminals is 220 kV. A three-phase short circuit occurs at the
load terminals. Find the generator transient current including the load current.

D X ¢
C

13.8/220 kV

sner () ] K

FIGURE 8.16
One-line diagram for Example 8.9.

The load may be represented by a per unit impedance as shown in Figure 8.16.

100/36.87° o
220 o
v
| Z5, = o = 1/ 3687 0.8+ 0.6 pu
Before fault, the load current is
14 1.0/0°
Ij=—=———-=08—-406=1/-36.87°
L 7L 084400 0 j0.6 36.87° pu

The emf behind transient reactance is
E =V +j(X,fl + X))t
= 1.0£0° + 5(0.25 + 0.2)(0.8 — j0.6) = 1.27 + 50.36 = 1.32/15.83° pu

When the fault is applied by closing switch S, the generator short circuit transient
current is :

po_ B 132/1583
97 (X, + X)) 5(0.2540.2)

=0.8 —72.822 = 2.93/-74.17° pu
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(b) Using Thévenin’s theorem and superposition with load current

The fault current is found in the absence of the load by obtaining the Thévenin’s
equivalent circuit to the point of fault. The total short circuit current is then given
by superimposing the fault current with the load current.

Example 8.10

Find the generator transient current in Problem 8.9 using Thévenin’s method.

The one-line diagram of Example 8.10 without the load is shown in Figure
8.17(a). The circuit for the Thévenin’s equivalent impedance with respect to the
point of fault is shown in Figure 8.17(b). The Thévenin’s voltage is the prefault

Y'Y Y\ ) 0 YY" YYY\ To)
D, 2 + §0.25 §0.2

+
<_> Vin Zn

(@ ()

o |
[

FIGURE 8.17 )
(a) One-line diagram for Example 8.10 without the load and (b) Thévenin’s equivalent impedance to
the point of fault.

terminal voltage, i.e.,

220

Vth=§§5

=1/0° pu
and the Thévenin’s impedance is
Zy, = 3(0.25 + 0.2) = j0.45

The fault contribution is

- Ve _ 1020°

~ Y _ = 2222
I= Zw - G045 7 pu

Now superimposing the load current with the fault current results in
Ig=I; + I, = —j2.222 + (0.8 — j0.6) = 0.8 — j2.822 = 2.93/—74.17° pu

which checks with the result in Example 8.9.
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PROBLEMS

8.1.

8.2,

8.3.

84.

8.5.

8.6.

A sinusoidal voltage given by v(t) = 390sin(315¢ + «) is suddenly applied
to a series RL circuit. R =32 and L = 0.4 H.

(a) The switch is closed at such a time as to permit no transient current. What
value of & corresponds to this instant of closing the switch? Obtain the in-
stantaneous expression for i(t). Use MATLAB to plot i(t) up to 80 ms in
steps of 0.01 ms. _

(b) The switch is closed at such a time as to permit maximum transient cur-
rent. What value of o corresponds to this instant of closing the switch? Ob-
tain the instantaneous expression for i(t). Use MATLAB to plot i(t) up to 80
ms in steps of 0.01 ms.

(c) What is the maximum value of current in part (b) and at what time does
this occur after the switch is closed?

Consider the synchronous generator in Example 8.2. A three-phase short cir-
cuit is applied at the instant when the rotor direct axis position is at § = 30°.
Use odedS to simulate (8.36), and obtain and plot the transient waveforms
for the current in each phase and the field current.

Consider the synchronous generator in Example 8.2. A line-to-line short cir-
cuit occurs between phases b and c at the instant when the rotor direct axis
position is at § = 30°. Use oded5 to simulate (8.46), and obtain the transient
waveforms for the current in phase b and the field current.

Consider a line-to-ground short circuit between phase a and ground in a syn-
chronous generator. Apply the short circuit conditions

to the voltage equation of the synchronous machine given by (8.4). Substitute
for all the flux linkages in terms of the inductances given by (8.9)—(8.13) and
verify Equation (8.47).

Consider the synchronous generator in Example 8.2. A line-to-ground short
circuit occurs between phase a and ground at the instant when the rotor direct
axis position is at § = 30°. Use ode45 to simulate (8.47), and obtain the
transient waveforms for the current in phase a and the field current.

A three-phase, 60-Hz synchronous machine is driven at constant synchronous
speed by a prime mover. The armature windings are initially open-circuited
and field voltage is adjusted so that the armature terminal voltage is at the
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rated value (i.e., 1.0 per unit). The machine has the following per unit reac-
tances and time constants.

X' =0.25 pu Ty = 0.04 sec

X, =0.45pu 7y = 1.4 sec

Xy =1.50pu

(a) Determine the steady state, transient, and subtransient short circuit cur-
rents.

(b) Obtain and plot the fundamental-frequency waveform of the armature
current for a three-phase short circuit at the terminals of the generator. As-
sume the short circuit is applied at the instant when the rotor direct axis is
along the magnetic axis of phase a, i.e., § = 0.

For the machine in Problem 8.6, assume that a three-phase short circuit is
applied at the instant when the rotor quadrature axis is along the magnetic
axis of phase a, i.e., § = 7/2 radians. Obtain and plot the asymmetrical
waveform of the armature current for phase a. The armature short circuit
time constant is 7, = 0.3 sec.

A three-phase, 60-Hz synchronous machine is driven at constant synchronous
speed by a prime mover. The armature windings are initially open-circuited
and field voltage is adjusted so that the armature terminal voltage is at the
rated value (i.e., 1.0 per unit). The generator is suddenly subjected to a sym-
metrical three-phase short circuit at the instant when direct axis is along the
magnetic axis of phase a, i.e., § = 0. An oscillogram of the short-circuited
current is obtained. The peak values at the first two cycles, at the 20th and
21st cycles, and the steady value after a long time were recorded as tabulated
in the following table.

Inaz, pu | 54016 4.6037 --- 2.6930 26720 --- 0.9445
Time, sec | 0.0042 0.0208 --- 0.3208 03375 -..- 10.004

Determine the transient and the subtransient reactances and time constants.

A 100-MVA, three-phase, 60-Hz generator driven at constant speed has the
following per unit reactances and time constants

X" = 0.20 pu 7y = 0.04 sec
X, =0.30pu 7y = 1.0 sec
Xqg =120 pu 1, = 0.25 sec

The armature windings are initially open-circuited and field voltage is ad-
justed so that the armature terminal voltage is at the rated value (i.e., 1.0
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8.10.

8.11.

8.12.

per unit). The generator is suddenly subjected to a symmetrical three-phase
short circuit at the instant when 6 = 7 /2. Obtain and plot the asymmetrical
waveform of the armature current for phase a. Determine

(2) The rms value of the ac component in phase a at t = 0.
(b) The dc component of the current in phase a at t = 0.
(c) The rms value of the asymmetrical current in phase a at t = 0.

A 100-MVA, 20-kV, 60-Hz three-phase synchronous generator is connected
to a 100-MVA, 20/400 kV three-phase transformer. The machine has the fol-
lowing per unit reactances and time constants.

X7 =0.15pu 74 = 0.035 sec
7, =0.25 pu 7 = 0.50 sec
X4 =1.25pu Tq = 0.3 sec

The transformer reactance is 0.25 per unit. The generator is operating at the
rated voltage and no-load when a three-phase short circuit occurs at the sec-
ondary terminals of the transformer.

(2) Find the subtransient, transient, and the steady state short circuit currents
in per unit and actual amperes on both sides of the transformer.

(b) What is the maximum asymmetrical rms current (ac plus dc) at the be-
ginning of the short circuit?

(c) Obtain and plot the instantaneous-expression for the short circuit current
including the dc component. Assume § = /2 radians.

In Problem 8.10, a three-phase load of 80-MVA, 0.8 power factor lagging
is connected to the transformer secondary side. The line-to-line voltage at
the load terminals is 400 kV. A three-phase short circuit occurs at the load
terminals. Find the generator transient current including the load current.

A 100-MVA, 20-kV synchronous generator is connected through a transmis-
sion line to a 100-MVA, 20-kV synchronous motor. The per unit transient
reactances of the generator and motor are 0.25 and 0.20, respectively. The
line reactance on the base of 100 MVA is 0.1 per unit. The motor is taking
50 MW at 0.8 power factor leading at a terminal voltage of 20 kV. A three-
phase short circuit occurs at the generator terminals. Determine the transient
currents in each of the two machines and in the short circuit.




CHAPTER

9

BALANCED FAULT

9.1 INTRODUCTION

Fault studies form an important part of power system analysis. The problem con-
sists of determining bus voltages and line currents during various types of faults.
Faults on power systems are divided into three-phase balanced faults and unbal-
anced faults. Different types of unbalanced faults are single line-to-ground fault,
line-to-line fault, and double line-to-ground fault, which are dealt with in Chapter
10. The information gained from fault studies are used for proper relay setting and
coordination. The three-phase balanced fault information is used to select and set
phase relays, while the line-to-ground fault is used for ground relays. Fault studies
are also used to obtain the rating of the protective switchgears.

The magnitude of the fault currents depends on the internal impedance of the
generators plus the impedance of the intervening circuit. We have seen in Chapter
8 that the reactance of a generator under short circuit condition is not constant.
For the purpose of fault studies, the generator behavior can be divided into three
periods: the subtransient period, lasting only for the first few cycles; the transient
period, covering a relatively longer time; and, finally, the steady state period. In
this chapter, three-phase balanced faults are discussed. The bus impedance ma-
trix by the building algorithm is formulated and is employed for the systematic
computation of bus voltages and line currents during the fault. Two functions are
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developed for the formation of the bus impedance matrix. These function are Zbus
= zbuild(zdata) and Zbus = zbuildpi(linedata, gendata, yload). The latter one
is compatible with power flow input/output files. A program named symfault is
developed for systematic computation of three-phase balanced faults for a large
interconnected power system.

9.2 BALANCED THREE-PHASE FAULT

This type of fault is defined as the simultaneous short circuit across all three phases,
It occurs infrequently, but it is the most severe type of fault encountered. Because
the network is balanced, it is solved on a per-phase basis. The other two phases
carry identical currents except for the phase shift.

In Chapter 8 it was shown that the reactance of the synchronous generator
under short-circuit conditions is a time-varying quantity, and for network analysis
three reactances were defined. The subtransient reactance X”, for the first few
cycles of the short circuit current, transient reactance Xé, for the next (say) 30
cycles, and the synchronous reactance X4, thereafter. Since the duration of the
short circuit current depends on the time of operation of the protective system, it
is not always easy to decide which reactance to use. Generally, the subtransient
reactance is used for determining the interrupting capacity of the circuit breakers.
In fault studies required for relay setting and coordination, transient reactance is
used. Also, in typical transient stability studies, transient reactance is used.

A fault represents a structural network change equivalent with that caused by
the addition of an impedance at the place of fault. If the fault impedance is zero,
the fault is referred to as the bolted fault or the solid Jault. The faulted network can
be solved conveniently by the Thévenin’s method. The procedure is demonstrated
in the following example.

Example 9.1

The one-line diagram of a simple three-bus power system is shown in Figure
9.1. Each generator is represented by an emf behind the transient reactance. All
impedances are expressed in per unit on a common 100 MVA base, and for sim-
plicity, resistances are neglected. The following assumptions are made.

(i) Shunt capacitances are neglected and the system is considered on no-load.
(if) All generators are running at their rated voltage and rated frequency with
their emfs in phase.

Determine the fault current, the bus voltages, and the line currents during the
fault when a balanced three-phase fault with a fault impedance Z; = 0.16 per unit
occurs on
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FIGURE 9.1
The impedance diagram of a simple power system.

The fault is simulated by switching on an impedance Z; at bus 3 as shown
in Figure 9.2(a). Thévenin’s theorem states that the changes in the network volt-
age caused by the added branch (the fault impedance) shown in Figure 9.2(a) is
equivalent to those caused by the added voltage V3(0) with all other sources short-
circuited as shown in Figure 9.2(b).

Z; = §0.16

FIGURE 9.2
(a) The impedance network for fault at bus 3. (b) Thévenin’s equivalent network.
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(a) From 9.2(b), the fault current at bus 3 is

V3(0)

Ii(F) = Zn+ Z;

where V3(0) is the Thévenin’s voltage or the prefault bus voltage. The prefault bus
voltage can be obtained from the results of the power flow solution. In this example,
since the loads are neglected and generator’s emfs are assumed equal to the rated
value, all the prefault bus voltages are equal to 1.0 per unit, i.e.,

V1(0) = V2(0) = V3(0) = 1.0 pu

Z33 is the Thévenin’s impedance viewed from the faulted bus.
To find the Thévenin’s impedance, we convert the A formed by buses 123 to
an equivalent Y as shown in Figure 9.3(a).

j0.24
§0.1 Z33 = §0.34
3 3
LF)}(3) Vi L(F) |3 Vi
j0.16 70.16
(b) = © =

FIGURE 9.3
Reduction of Thévenin’s equivalent network.

0.4)(j0.8) 0.4)(j0.4)
2y, = 2y, = 90-4)(70.8) —j02 2, = H04G04) — jo1

jl1.6 ) j1.6
Combining the parallel branches, Thévenin’s impedance is
(70.4)(j0.6) .
Z3z = ————L }40.1
3 j04+ 506 7

= 70.24 + 50.1 = 50.34
From Figure 9.3(c), the fault current is

V3(F) 1.0 B
Zs3+Z5  j0.344j0.16

I3(F) = —352.0 pu
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With reference to Figure 9.3(a), the current divisions between the two generators
are
Jor = 0
j0.4 + 0.6
Ty = j0.4
70.4 + 0.6

I3(F)=—-312 pu
I3(F) = —j0.8 pu

For the bus voltage changes from Figure 9.3(b), we get

AV; =0~ (50.2)(—j1.2) = -0.24 pu
AVy =0 - (j0.4)(—50.8) =-0.32 pu
AV3 = (j0.16)(—52) — 1.0 = —0.68 pu
The bus voltages during the fault are obtained by superposition of the prefault

bus voltages and the changes in the bus voltages caused by the equivalent emf
connected to the faulted bus, as shown in Figure 9.2(b), i.e.,

Vi(F) = Vi(0) + AV; = 1.0 — 0.24 = 0.76 pu
Va(F) = Va(0) + AV, = 1.0 — 0.32 = 0.68 pu
V3(F) = V3(0) + AV = 1.0 — 0.68 = 0.32 pu

The short circuit-currents in the lines are

Vi(F) — Va(F) _ 0.76 — 0.68

Lio(F) = ” o8 = §0.1 pu
Vi(F) — Va(F 0.76 — 0.32 .

Lis(F) = 1( )Z13 3(F) _ YR —j1.1 pu
Vo(F) — V3 (F 0.68 — 0.32 .

I23(F) = 2( )223 3( ) = ]04 = —]09 pu

(b) The fault with impedance Z; at bus 2 is depicted in Figure 9.4(a), and its
Thévenin’s equivalent circuit is shown in Figure 9.4(b). To find the Thévenin’s
impedance, we combine the parallel branches in Figure 9.4(b). Also, combining
parallel branches from ground to bus 2 in Figure 9.5(a), results in

_(40.6)(50.4)

Zog = = 70.24
27 7506+504 7
From Figure 9.5(b), the fault current is
1.
I(F) = 1O _ 0 = —j2.5 pu

Zoo+ Z5  j0.24 +30.16
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FIGURE 94
(2) The impedance network for fault at bus 2. (b) Thévenin’s equivalent network.

70.24

2
Vin
Iz(F)l
Zs; =340.16  Z; =350.16

(@ = (®)

FIGURE 9.5
Reduction of Thévenin’s equivalent network.

With reference to Figure 9.5(a), the current divisions between the generators are

§0.4 .

I = ———I F = — .

G177 504+ 406 2(F) =—510 pu
§0.6 .

Igs = —2" __[(F) = —4l.

“2= 504+ 506 2(F) =—j15 pu

For the bus voltage changes from Figure 9.4(a), we get
AVy =0 - (j0.2)(-41.0) = -0.2 pu
AV, =0 - (j0.4)(—j1.5) = —0.6 pu

AVz=—0.2— (j0.4)(%1'0) =—-04 pu
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The bus voltages during the fault are obtained by superposition of the prefault
bus voltages and the changes in the bus voltages caused by the equivalent emf
connected to the faulted bus, as shown in Figure 9.4(b), i.e.,

Vi(F) = V4(0) + AV, =1.0-0.2=0.8 pu
Va(F) = V3(0) + AVy = 1.0~ 0.6 = 0.4 pu
Va(F)=V3(0)+ AV3=10-04=06 pu

The short circuit-currents in the lines are

Vi(F) - Vo(F) _ 0.8—0.4

Iia(F) = - I —70.5 pu
Vi(F) - V3(F) 08-0.6 .

Ii3(F) = 1( )213 3(F) _ i = —50.5 pu
Vs(F) - V3(F) 06-04 )

I32(F) = 3( )zsz 3( ) - 904 = —-_70.5 pu

(c) The fault with impedance Z; at bus 1 is depicted in Figure 9.6(a), and its
Thévenin’s equivalent circuit is shown in Figure 9.6(b).

@
@ @ ®)

(a) The impedance network for fault at bus 1. (b) Thévenin’s equivalent network.

FIGURE 9.6

To find the Thévenin’s impedance, we combine the parallel branches in Figure
9.6(b). Also, combining parallel branches from ground to bus 1 in Figure 9.7(a),
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70.16
1
v G
I
L(F )l
Zy = 30.16 Zs = j0.16
L @ () :
FIGURE 9.7
Reduction of Thévenin’s equivalent network.
results in
10.2){50.
_ 402)(508) _ 70.16
j0.2 4 50.8
From Figure 9.7(b), the fault current is
Vi(0 1.
L(F) = 10 _ 0 = —53.125 pu '

Zu+Z;  j0.16 +j0.16

With reference to Figure 9.7(a), the current divisions between the two generators
are

il o i

0.8 ,
Igi = —22C __L(F)= —io.
1= 502+ ,08 2(F) = —52.50 pu
0.2 _
Igp = —22% __[(F) = —0.625
62 = 5ot jog 2 = —j0625 pu

For the bus voltage changes from Figure 9.6(b), we get
AVy =0 — (j0.2)(—52.5) = —0.50 pu
AVp = 0 — (j0.4)(—40.625) = —0.25 pu

AV = —0.5 + (j0.4)(ﬂ) =-0.375 pu

Bus voltages during the fault are obtained by superposition of the prefault bus volt-
ages and the changes in the bus voltages caused by the equivalent emf connected
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to the faulted bus, as shown in Figure 9.6(b), i.e.,

Vi(F) = V4(0) + AV; =1.0—-0.50= 0.50 pu
Va(F) = Va(0) + AVy =1.0—025= 0.75 pu
Va(F) = V3(0) + AV3 = 1.0 — 0.375 = 0.625 pu

The short-circuit currents in the lines are

Va(F) = Vi(F) _ 0.75—-05 _

Izl(F) = o j0.8 = —j0.3125 pu
Iy (F) = V:i(F)z;'lVl(F) _ 0.62;’;) :4- 0.5 _ 03125 pu
La(F) = V2(F)z;'3V3(F) _ 0.753;)'2.625 03125 pu

In the above example the load currents were neglected and all prefault bus
voltages were assumed to be equal to 1.0 per unit. For more accurate calculation,
the prefault bus voltages can be obtained from the power flow solution. As we have
seen in Chapter 6, in a power system, loads are specified and the load currents are
unknown. One way to include the effects of load currents in the fault analysis is to
express the loads by a constant impedance evaluated at the prefault bus voltages.
This is a very good approximation which results in linear nodal equations. The
procedure is summarized in the following steps.

e The prefault bus voltages are obtained from the results of the power flow
solution.

e In order to preserve the linearity feature of the network, loads are converted
to constant admittances using the prefault bus voltages.

o The faulted network is reduced into a Thévenin’s equivalent circuit as viewed
from the faulted bus. Applying Thévenin’s theorem, changes in the bus volt-
ages are obtained.

e Bus voltages during the fault are obtained by superposition of the prefault
bus voltages and the changes in the bus voltages computed in the previous

step.

e The currents during the fault in all branches of the network are then obtained.
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9.3 SHORT-CIRCUIT CAPACITY (SCC)

The short-circuit capacity at a bus is a common measure of the strength of a bus,
The short-circuit capacity or the short-circuit MVA at bus k is defined as the prod-
uct of the magnitudes of the rated bus voltage and the fault current. The short-
circuit MVA is used for determining the dimension of a bus bar, and the interrupt-
ing capacity of a circuit breaker. The interrupting capacity is only one of many
ratings of a circuit breaker and should not be confused with the momentary duty of
the breaker described in (8.63).

Based on the above definition, the short-circuit capacity or the short-circuit
MVA at bus & is given by

SCC = V3V I.(F) x 1073 MVA ©.1)

where the line-to-line voltage Vi, is expressed in kilovolts and I x(F") is expressed
in amperes. The symmetrical three-phase fault current in per unit is given by
Vi(0)
I(Fpy = ——= 9.2

k( )pu Xk ( )
where V4 (0) is the per unit prefault bus voltage, and X} is the per unit reactance to
the point of fault. System resistance is neglected and only the inductive reactance
of the system is allowed for. This gives minimum system impedance and maximum
fault current and a pessimistic answer. The base current is given by

. SB X 103
B V3Vg

where Sp is the base MVA and V3 is the line-to-line base voltage in kilovolts.
Thus, the fault current in amperes is

9.3)

I(F) = L(F)nlp
Vi(0) Sp x 10°

— 9.9
Xrx V3Vp
Substituting for I, (F') from (9.4) into (9.1) results in
Vi(0)Sp Vi,
SCC =2 "2~ 9.5)
Xk VB (
If the base voltage is equal to the rated voltage, i.e., Vi = Vg
S
scc = Ye0Sz (9.6)
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The prefault bus voltage is usually assumed to be 1.0 per unit, and we therefore
obtain from (9.6) the following approximate formula for the short-circuit capacity
or the short-circuit MVA.

SCC = —S—B— MVA 9.7
Xrx

9.4 SYSTEMATIC FAULT ANALYSIS
USING BUS IMPEDANCE MATRIX

The network reduction used in the preceding example is not efficient and is not
applicable to large networks. In this section a more general fault circuit analysis
using nodal method is obtained. We see that by utilizing the elements of the bus
impedance matrix, the fault current as well as the bus voltages during fault are
readily and easily calculated.

Consider a typical bus of an n-bus power system network as shown in Fig-
ure 9.8. The system is assumed to be operating under balanced condition and a
per phase circuit model is used. Each machine is represented by a constant voltage
source behind proper reactances which may be X}, X, or X4. Transmission lines
are represented by their equivalent 7 model and all impedances are expressed in
per unit on a common MVA base. A balanced three-phase fault is to be applied at
bus k through a fault impedance Z;. The prefault bus voltages are obtained from
the power flow solution and are represented by the column vector

O o — 5
1
1

Zs

FIGURE 9.8
A typical bus of a power system.
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[ V1(0) ]

Vius(0) = | V4(0) ©3)

i Vn:(O) ]

As already mentioned, short circuit currents are so much larger than the steady-
state values that we may neglect the latter. However, a good approximation is to
represent the bus load by a constant impedance evaluated at the prefault bus volt-
age, i.e.,

9.9)

The changes in the network voltage caused by the fault with impedance Z; is
equivalent to those caused by the added voltage V, (0) with all other sources short-
circuited. Zeroing all voltage sources and representing all components and loads
by their appropriate impedances, we obtain the Thévenin’s circuit shown in Fi gure
9.9. The bus voltage changes caused by the fault in this circuit are represented by
the column vector

~ -

AWy
AV = | AV ©9.10
i - .
|' Y —_——— —
— - - - k
Vin = V(0
[“@&% D Vi = i(0)
1T TL|um
Zy

FIGURE 9.9
A typical bus of a power system.
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From Thévenin’s theorem bus voltages during the fault are obtained by superposi-
tion of the prefault bus voltages and the changes in the bus voltages given by

Vbus(F) = Vlms(o) + AVpys (9.11)

In Section 6.2, we obtained the node-voltage equation for an n-bus network. The
injected bus currents are expressed in terms of the bus voltages (with bus 0 as
reference), i.e.,

Tous = Yous Vius 9.12)

where Iy, is the bus current vector entering the bus and Y, is the bus admittance
matrix. The diagonal element of each bus is the sum of admittances connected to
it, i.e.,

m
Y= w; J#i 9.13)
—~

The off-diagonal element is equal to the negative of the admittance between the
buses, i.e.,

Yij =Y = —yi (9.14)

where y;; (lower case) is the actual admittance of the line i-7. For more details
refer to Section 6.2. )

In the Thévenin’s circuit of Figure 9.9, current entering every bus is zero
except at the faulted bus. Since the current at faulted bus is leaving the bus, it is
taken as a negative current entering bus k. Thus the nodal equation applied to the
Thévenin’s circuit in Figure 9.9 becomes

[0 ] v o owe oy | [ AW]
B | = | owe o || AV ©.15)
i 0 | Ly;u . yr.zk - yr.m_ _AVn_
or
Tous(F) = Yius AViys (9.16)

Solving for AV y,s, we have

A\,bus = ZbusIbus(F) (9.17)
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where Zy,,, = Yb‘uls is known as the bus impedance matrix. Substituting (9.17) into
(9.11), the bus voltage vector during the fault becomes

Vbus (F) = Vlms(o) + ZbusIbus(F) (9.18)

Writing the above matrix equation in terms of its elements, we have

- - - -

(Vi(F)] [Vi®] [Zu - Zw - Zun 0
Ve(F) | = Va(0) [+ | Zta - Zik -+ Zin | | ~I(F) | (9.19)
_Vn(F)_ _Vn(O)J _an o Ik "‘Zn'nJ L 0 ]

Since we have only one single nonzero element in the current vector, the kth equa-
tion in (9.19) becomes

Vi (F) = Vie(0) — ZirIi(F) (9.20)
Also from the Thévenin’s circuit shown in Figure 9.9, we have
Vi(F) = Z;Ii,(F) 9.21)

For bolted fault, Z; = 0 and V;,(F) = 0. Substituting for Vi (F) from (9.21) into
(9.20) and solving for the fault current, we get

74(0)

L(F) =
k(F) Zon + Z;

9.22)

Thus for a fault at bus k we need only the Zj, element of the bus impedance matrix.
This element is indeed the Thévenin’s impedance as viewed from the faulted bus,
Also, writing the ith equation in (9.19) in terms of its element, we have

Vi(F) = Vi(0) — Zy It (F) (9.23)

Substituting for I;,(F'), bus voltage during the fault at bus i becomes
Vi(F) = Vi(0) — —2%_y, (0) (9.24)
¢ : Zyk + Zs k '

With the knowledge of bus voltages during the fault, we can calculate the fault
current in all the lines. For the line connecting buses i and J with impedance z;;,
the short circuit current in this line (defined positive in the direction ¢ — j) is

Vi(F) — Vi(F)

L;(F) = o
ij

(9.25)
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We note that with the knowledge of the bus impedance matrix, the fault cur-
rent and bus voltages during the fault are readily obtained for any faulted bus in the
network. This method is very simple and practical. Thus, all fault calculations are
formulated in the bus frame of reference using bus impedance matrix Zpys.

One way to find Zy,; is to formulate Y3, matrix for the system and then find
its inverse. The matrix inversion for a large power system with a large number of
buses is not feasible. A computationally attractive and efficient method for finding
Zwus Matrix is “building” or “assembling” the impedance matrix by adding one
network element at a time. In effect, this is an indirect matrix inversion of the
bus admittance matrix. The algorithm for building the bus impedance matrix is
described in the next section.

Example 9.2

A three-phase fault with a fault impedance Z; = j0.16 per unit occurs at bus 3 in
the network of Example 9.1. Using the bus impedance matrix method, compute the
fault current, the bus voltages, and the line currents during the fault.

In this example the bus impedance matrix is obtained by finding the inverse
of the bus admittance matrix. In the next section, we describe an efficient method
of finding the bus impedance matrix by the method of building algorithm.

To find the bus admittance matrix, the Thévenin’s circuit in Figure 9.2(b) is
redrawn with impedances converted to admittances as shown in Figure 9.10. The
ith diagonal element of the bus admittance matrix is the sum of all admittances
connected to bus i, and the ijth off-diagonal element is the negative of the admit-
tance between buses i and j. Referring to Figure 9.10, the bus admittance matrix
by inspection is

—38.75 4125 325
Yeus =1 j1.25 —356.256 325
j2.5 j2.5 —35.0
Using MATLAB inverse function inv, the bus impedance matrix is obtained
40.16 350.08 50.12
Zyus = | 70.08 30.24 30.16
§0.12 j0.16 50.34

From (9.22), for a fault at bus 3 with fault impedance Zy = j0.16 per unit, the
fault current is

Vs(0) 1.0 )
= = —j2.0
Zt Z;  j0sa+j016 o PY

I3(F) =
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FIGURE 9.10
The admittance diagram for system of Figure 9.2 (b).

From (9.23), bus voltages during the fault are
Vi(F) = Vi(0) — Z13I3(F) = 1.0 — (70.12)(—52.0) = 0.76 pu

Va(F) = V2(0) = ZosI3(F) = 1.0 — (j0.16)(—52.0) = 0.68 pu
V3(F) = V3(0) = Zs3I3(F) = 1.0 — (j0.34)(—52.0) = 0.32 pu

From (9.25), the short circuit currents in the lines are

VA(F) — Va(F) _ 0.76 — 0.68

ha(F) = 12 S0 - 401 pu
Vi(F) = 3(F)  0.76-032 .

ILis(F) = i )213 () _ 704 =—j1.1 pu
Vo(F) — Va(F) 068—032

In3(F) = 2( )223 () _ S04 = 909 pu

The results are exactly the same as the values found in Example 9.1(a). The reader
is encouraged to repeat the above calculations for fault at buses 2 and 1, and com-
pare the results with those obtained from parts (b) and (c) in Example 9.1.

Note that the values of the diagonal elements in the bus impedance matrix
are the same as the Thévenin’s impedances found in Example 9.1, thus eliminating
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the repeated need for network reduction for each fault location. Furthermore, the
off-diagonal elements are utilized in (9.24) to obtain bus voltages during the fault.
Therefore, the bus impedance matrix method is an indispensable tool for fault stud-
ies.

9.5 ALGORITHM FOR FORMATION
OF THE BUS IMPEDANCE MATRIX

Before we present the building algorithm for the bus impedance matrix, a few def-
initions from the discipline of the graph theory are introduced. The graph of a
network describes the geometrical structure of the network. The graph consists of
redrawing the network, with a line representing each element of the network. The
graph of the network for Figure 9.2(a) before the fault application is shown in Fig-
ure 9.11(a). The buses are represented by nodes or vertices and impedances by

0
1 2
1 ) 2
3 5
3
(@
FIGURE 9.11

Graph, a selected tree, and a cotree for the network of Figure 9.2(b).

line segments called elements or edges. A tree of a connected graph is a connected
subgraph connecting all the nodes without forming a loop. The elements of a tree
are called branches. In general, a graph contains multiple trees. The number of
branches in any selected tree denoted by b is always one less than the nodes, i.e.,

b=n-1 (9.26)

where 7 is the number of nodes including the reference node 0. Once a tree for a
graph has been defined, the remaining elements are referred to as links. The collec-
tion of links is called a cotree. If e is the total number of elements in a graph, the
number of links in a cotree is

= e — =e—n+1 (9'27)
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A loop that contains one link is called a basic loop. The number of basic loops
is unique; it equals the number of links and is the number of independent loop
equations. A cut set is a minimal set of branches that, when cut, divides the graph
into two connected subgraphs. A fundamental cut set is a cut set that contains only
one branch. The number of fundamental cut sets is unique; it equals the number of
branches and is the number of independent node equations. Figure 9.11(b) shows
a tree of a graph with the tree branches highlighted by heavy lines and the cotree
links by dashed lines. '

The bus impedance matrix can be built up starting with a single element and
the process is continued until all nodes and elements are included. Let us assume
that Zy,; matrix exists for a partial network having m buses and a reference bus 0
as shown in Figure 9.12.

Partial I
network [—e
bus | T

Reference

FIGURE 9.12
Partial network,

The corresponding network equation for this partial network is
Vius = Zipyslpys (9.28)

For an n-bus system, m buses are included in the network and Zy,,, is of order
m X m. We shall add one element at a time from the remaining portion of the
network until all elements are included. The added element may be a branch or a
link described as follows.

ADDITION OF A BRANCH

When the added element is a branch, a new bus is added to the partial network
creating a new row and a column, and the new bus impedance matrix is of order
(m+1) x (m + 1). Let us add a branch with impedance Zpq from an existing bus
p to anew bus g as shown in Figure 9.13(a). The network equation becomes
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1 1
-——e —
2 2
| ——eo ———e
Partial | : p q Partial | : p
network ——&————0 network —*
bus .._.TIL bus ____'T’
0 0 q
o L ———l
Reference Reference
(@) (b
FIGURE 9.13
Addition of a branch p-q.
Vil [ Z2u Zi - Zip 0 Zim Zig [ I ]
Va Zon Zyy -+ Zyp -+ Zom 2y I
‘/'p = Zp]_ Zp2 A pr A me qu Ip (9.29)
Vm Zml Zm2 Zmp me qu Im
_Vq_ Lqu Zg2 e Zep Zgm Zgq | _Iq_

The addition of branch does not affect the original matrix, but requires the calcu-
lation of the elements in the g row and column. Since the elements of the power
system network are linear and bilateral, Z,; = Z;q, for g = 1,...,m.

First, let us compute the elements Zy; for ¢ = 1,...,m and ¢ # g (ie,
excluding diagonal element Z,,). To calculate these elements we will apply a cur-
rent source of 1 per unit at the ith bus, i.e., I; = 1 py, and keep remaining buses
open-circuited, i.e., [ =0,k =1,...,m and k # 7. From (9.29), we get

Vi=2u
Vo = Zy;
V= Zp; (9.30)
Vm = Zm‘i
Vg = Zgi

From Figure 9.13(a)

V=V, — g 9.31)
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where vy, is the voltage across the added branch with impedance z,,, and is given
by

Upg = Zpqlpg (9.32)
Since added element p-q is a branch, ipg = 0, thus vy, = 0 and (9.31) reduces to
Zyi = Zpy ci=1...,m i#q (9.33)

To calculate the diagonal element Zqq> we will inject a current source of 1 per unit
at the gth bus, i.e., I, = 1 pu, and keep other buses open-circuited. From (9.29),
we have

V= Zgq (9.34)

Since at the gth bus, the injected current flows from the bus q towards the bus p,
ipg = —Iy = —1. Hence, (9.32) reduces to

Upg = —2pq (9.35)
Substituting for v, in (9.31), we get
Vo =Vo+ 2zpq (9.36)
Now, since from (9.30) for i = ¢, Vi = Zgq and Vo = Zpq, (9.36) becomes
Zaq = Zpg + zpq (9.37)
If node p is the reference node as shown in Figure 9.13(b), V, = 0 and we obtain
Zgi=Zp=V,=0 i=1,...,m i#q (9.38)
From (9.37), the diagonal element becomes
Zgq = zpg (9.39)
ADDITION OF A LINK

When the added element is a cotree link between the bus p and ¢, no new bus is
created. The dimension of the Zj,; matrix remains the same but all the elements
are required to be calculated. Let us add a link with impedance z,, between two
existing buses p and q as shown in Figure 9.14(a). If I, is the current through the
added link in the direction shown in Figure 9.14(a), we have

2pgle =V, — V, (9.40)
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FIGURE 9.14

Addition of a link p-g.

or
Vg — Vo + 2pqle = 0 9.41)

The added link modifies the old current I, to (I, — I;) and the old current I, to
(I, + I) as shown in Figure 9.14(a), and the network equation becomes

Vi= Zuh+ - +Zp(Ip — Ip) + Z1g(Ig + Ip)+ - +Zimm

942
Vo= Zah+ -+ +Zgp(Ip — Ip) + Zgq(Ig + I)+ -+ +ZgmIm 042)

Vin = mili+ - +Zmp(Ip - IZ) + qu(Iq + I£)+ <+ ZmmIm
Substituting for V,, and V, from (9.42) into (9.41) results in

(Zg = Zo))+ -+ (Zgp — Zop)Ip + -+ + (Zgg — Zpg) g + -+ +
(Zgm — Zym)Im =+ (2pq + Zpp + Zgg — 2Zpg)1e = O (9.43)
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Equations in (9.42) plus (9.43) result in m + 1 simultaneous equations, which is
written in matrix form as

[ Vi [ Zn o Zy Zyg o Zam Zuw [ LT
Vp Zpl o Ipp qu Tt me Zpl I
Vo |=| Za - Zp Zy - Zgm gt Iq (9.44)
Vm Zml tee Zmp qu toe me Zml Im
L0 ) L Zn - Zy Zy - Zem Zu || I |
where
2y =2y = Zig — Z; (9.45)
and
Zop = Zpg + pr + qu - 2qu (9.46)

Now the link current I; can be eliminated. Equation (9.44) can be partitioned and
rewritten in compact form as

old
[V )= 25 52 [ ] o4
where .
AZ=[2Zy - Zpy Zy - Zm|" (9.48)
Expanding (9.47), we get
Vius = Z88Ts + AZI, (9.49)
and
0= AZ Ty + Zyl, (9.50)
or
I=- AZZT L, ©.51)

Substituting from (9.51) for I, in (9.49), we have

Vius = [zgﬁg - (9.52)

AZ AZT I
ZZZ bus
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or
Vius = Lpns Lous (9.53)
where
T
new — zgld AzAZ Zzz (9.54)

Note that (9.54) reduces the matrix to its original size. The reason for this is that
we have not added a new node but only linked two existing nodes.

The bus impedance matrix can be constructed with addition of branches and
links in any sequence. However, it is best to select a tree that contains the elements
connected to the reference node. If more than one element is connected between a
given node and the reference node, only one element can be selected as a branch
placing other elements in the cotree. The step-by-step procedure for building the
bus impedance matrix which takes us from a given bus impedance matrix ngfi to
anew Zp¢vis summarized below.

Rule 1: Addition of a Tree Branch to the Reference

Start with the branches connected to the reference node. Addition of a branch zg
between a new node q and the reference node 0 to the given Zgﬁds matrix of order
(m x m), results in the ZP¢¥ matrix of order (m + 1) X (m + 1). From the results

of (9.38) and (9.39), we have

Zn - Zwm O

pew | 1. 00 | 9.55)
bus 0 i Zp 0
0 . 0 240

This matrix is diagonal with the impedance values of the branches on the diagonal.

Rule 2: Addition of a Tree Branch from a New Bus to an Old Bus

Continue with the remaining branches of the tree connecting a new node to the
existing node. Addition of a branch 2z, between a new node ¢ and the existing
node p to the given Z¢'% matrix of order (m x m), results in the Zj7 matrix of

order (m + 1) x (m + 1). From the results of (9.33) and (9.37), we have

Zy e Zip Zim Zip 1
e 050
Zmi  Zmp o Zmm Zmp
| Zpn 0 Zpp o Zpm Zpptzpg |
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Rule 3: Addition of a Cotree Link between two existing Buses

When a link with impedance zp, is added between two existing nodes p and q, we
augment the ngl‘i matrix with a new row and a new column, and from (9.44) and
(9.45) we have

Zn Z1p Zyg o Zim Z1g—Zyp |
Zpl pr qu e me qu - pr
ng;" = qu qu qu Tt qu qu - qu 9.57)
Zml Zmp qu T me qu - Zmp
-qu—Zpl qu"pr qu“qu qu"me Zee J

where
Zoe = 2pq + Zip + Zgg — 27, (9.58)

The new row and column is eliminated using the relation in (9.54), which is re-
peated here

AZ AZT
ey = Zglt — % (9.59)
and AZ is defined as "
. Zpg — Z.
AZ = | “4pa~ Zpp (9.60)
Zgg — Zgp
i Zmg Zmp |

When bus q is the reference bus, Z,; = ig = 0 (for 7 = 1, m), and (9.57) reduces
to

Zu o Zip o Zim —Z1p
e O R o
Y/ Zmp N me _Zmp
| ~Zpn  —Zy o ~Zpm Zp |
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where Zy = 2pq + Zpp, and

~Z1p

AZ=| ~Zp (9.62)

L ~Zmp |

The algorithm to construct the Zy,; matrix by adding one element at a time
can be used to remove lines or generators from the network. The procedure is
identical to that of adding elements, except that the removed element is considered
as negative impedance, in order to cancel the effect of the element.

Based on the above algorithm, two functions named Zbus = zbuild(zdata)
and Zbus = zbuild(linedata, gendata, yload) are developed for the formation of
the bus impedance matrix. These functions are described in Section 9.6. Before
demonstrating this program, for the sake of better understanding the building algo-
rithm, we shall demonstrate the hand calculation procedure for the simple three-bus
network of Example 9.1.

Example 9.3

Construct the bus impedance matrix for the network in Example 9.1. The one-line
impedance diagram is shown in Figure 9.15(a).

(a)

FIGURE 9.15
Impedance diagram of Example 9.1 and a proper tree.

The elements connected to the reference node are included in the proper tree as
shown in Figure 9.15(b). We start with those branches of the tree connected to the
reference node. Add branch 1, z;p = j0.2 between node ¢ = 1 and reference
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node 0. According to rule 1, we have

) Pe) o
' 5 Zbus = le =Z10 = _7020 .

Next, add branch 2, 239 = ;0.4 between node g = 2 and reference node 0

73 _ Zu 0 - 70.2 0
bus 0  Zy 0 404

Note that the off-diagonal elements of the bus impedance matrix are zero. This is
because there is no connection between these buses other than to the reference. In
this example, there are no more branches from a new bus to the reference. We con-
tinue with the remaining branches of the tree. Add branch 3, 213 = 70.4 between
the new node q = 3 and the existing node p = 1. According to rule 2, we get

. Zu Zio Zn j0.2 0 0.2
29 = | Zn Zn  Zn =/ 0 jo4 O
Zn Zya Zu+ s Jjo.2 0 ;0.6

All tree branches are in place. We now proceed with the links. Add link 4, 219 =
70.8 between node ¢ = 2 and node p = 1. From (9.57), we have

[ Zn Z12 Z13 Z12 — Z11
A Zn Za Zys  Za— Iy
bus Z31 Z3y - Z33 Z32 — Z3y
| Zoy — 211 Zag — Zyy Zoz — Zi3 Za4
[ j0.2 0 j0.2 —j0.2
| o jo4 To  joa
T 102 0 jo6 —jo2
| 2j0.2 j0.4 —j02 Zu,
From (9.58)

Zaa =212+ Zn + Zp2 — 2213 = j0.8 + j0.2 + j0.4 — 2(50) = j1.4

and
AZ AZT 1 [ —J0-2
= - 704 | [-j02 jo.4 —j0.2]

—j0.05714  j0.11428 —;0.05714

[ J0.02857 —30.05714  j0.02857
j0.02857 —30.05714  j0.02857
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From (9.59), the new bus impedance matrix is

C 0.2 0 §0.2 j0.02857 —j0.05714  50.02857
z® — | 0 jo4 0 |—|—j0.05714 50.11428 —;0.05714
| j0.2 0 0.6 j0.02857 —50.05714  §0.02857
Cj0.17143 50.05714 j0.17143}

= | §0.05714 j0.28571 ;j0.05714
| j0.17143 j0.05714 50.57143

Finally, we add link 5, 293 = j0.4 between node ¢ = 3 and node p = 2. From
(9.57), we have

F Zn Z1a Z13 Z3 — Z12
z® Zn 22 Zos  Zp3— Iy
bus Z3 Z32 Z33 Z33 — Z3p

| Z31— Zo1 Z32— Z9a Z33 — Za3 Zay
[ 70.17143  j0.05714 50.17143 70.11429
| 70.05714 70.28571 50.05714 —450.22857
- j0.17143  70.05714 3j0.57143  j0.51429

| 70.11429 —30.22857 50.51429 Z4a

From (9.58)

Zun= 293+ Zon+ Zaz — 2793 = j0.4+50.28571+ §0.57143 —2(50.05714) = j1.14

and
= = = [—j0.22857 [j0.11429 —;0.22857 ;0.51429 ]
4 I 50.51429

-350.02286  j0.04571 —30.10286

§0.01143  —50.02286 j0.05143]
j0.05143 —;50.10286  ;0.23143

From (9.59), the new bus impedance matrix is

j0.17143 §0.05714 j0.17143 j0.01143 —350.02286  50.05143
Zius = | 70.05714 70.28571 j0.05714] — |—50.02286  50.04571 —30.10286
[ j0.17143 §0.05714 j0.57143 50.05143 —50.10286  50.23143

" j0.16 50.08 0.12
= | j0.08 j0.24 ;0.16
| j0.12 j0.16 j0.34

This is the desired bus impedance matrix Zy,s, which is the same as the one ob-
tained by inverting the Yy,,; matrix in Example 9.2.
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Example 9.4

The bus impedance matrix for the network shown in Figure 9.16 is found to be

0.3

FIGURE 9.16
Impedance diagram for Example 9.4.

40.183 j0.078 50.141
Ziws = | jO.O78 3§0.148 40.106
§0.141 50.106 50.267

The line between buses 1 and 3 with impedance Z;3 = §0.56 is removed by the
simultaneous opening of breakers at both ends of the line. Determine the new bus
impedance matrix.

The removal of an element is equivalent to connecting a link having an impedance
equal to the negated value of the original impedance. Therefore, we add link 23 =
—70.56 between node g = 3 and node p = 1. From (9.57), we have

Zn Z12 213 Z13—2Zn
Do = Z Z2 293 Za3z — Z1
s Z3 Z32 Z33 Z33 — 731
Z31~ 211 Z3g—Zi1g Zsz— Zy3 Zy
Thus, we get '
§0.183 j0.078 j0.141 —;0.042
2 _ | 0078 jo148 j0.106 j0.028
bus

§0.141 j0.106 j0.267  50.126
-50.042 j0.028 j0.126  Zy
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From (9.58)
Zauu=2z13+ 211+ Z33—2213= —70.56 + 50.183 + j0.267—2(j0.141) = —350.392

and

AZ AZT —j0.042
~ = ,01392 [ 50.028 | [ —0.042 50.028 ;0.126 ]
4 - §0.126

]

50.0030 —30.0020 —30.0090

[—j0.0045 50.0030 j0.0135}
j0.0135 —50.0090 —30.0405

From (9.59), the new bus impedance matrix is

- j0.183 j0.078 0.141 —j0.0045 50.0030  50.0135
Zows = | 70.078 j0.148 50.106 | — | 30.0030 —j0.0020 —3;0.0090
| j0.141 j0.106 50.267 50.0135 —30.0090 —30.0405

© 01875 j0.0750 50.1275
= | j0.0750 0.1500 ;0.1150
| j0.1275 50.1150 j0.3075

9.6 ZBUILD AND SYMFAULT PROGRAMS

Two functions are developed for the formation of the bus impedance matrix. One
function is named Zbus = zbuild(zdata), where the argument zdata is an e X 4
matrix containing the impedance data of an e-element network. Columns 1 and 2
are the element bus numbers and columns 3 and 4 contain the element resistance
and reactance, respectively, in per unit. Bus number 0 to generator buses contain
generator impedances. These may be the subtransient, transient, or synchronous re-
actances. Also, any other shunt impedances such as capacitors and load impedance
to ground (bus 0) may be included in this matrix.

The other function for the formation of the bus impedance matrix is zbus
= zbuildpi(linedata, gendata, yload), which is compatible with the power flow
programs. The first argument linedata is consistent with the data required for the
power flow solution. Columns 1 and 2 are the line bus numbers. Columns 3 through
5 contain line resistance, reactance, and one-half of the total line charging suscep-
tance in per unit on the specified MVA base. The last column is for the transformer
tap setting; for lines, 1 must be entered in this column. The lines may be entered in
any sequence or order. The generator reactances are not included in the linedata of
the power flow program and must be specified separately as required by the gen-
data in the second argument. gendata is an ngy x 4 matrix, where each row contains
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bus 0, generator bus number, resistance and reactance. The last argument, yload is
optional. This is a two-column matrix containing bus number and the complex
load admittance. This data is provided by any of the power flow programs Ifgauss,
Ifnewton or decouple. yload is automatically generated following the execution of
any of the above power flow programs.

The zbuild and zbuildpi functions obtain the bus impedance matrix by the
building algorithm method. These functions select a tree containing elements to the
reference node. First, all branches connected to the reference node are processed.,
Then the remaining branches of the tree are connected, and finally the cotree links
are added.

The program symfault(zdata, Zbus, V) is developed for the balanced three-
. phase fault studies. The function requires the zdata and the Zbus matrices. The
third argument V is optional. If it is not included, the program sets all the prefault
bus voltages to 1.0 per unit. If the variable V is included, the prefault bus voltages
must be specified by the array V containing bus numbers and the complex bus
voltage. The voltage vector V is automatically generated following the execution of
any of the power flow programs. The use of the above functions are demonstrated in
the following examples. When symfault is executed, it prompts the user to enter the
faulted bus number and the fault impedance. The program computes the total fault
current and tabulates the magnitude of the bus voltages and line currents during the
fault.

Example 9.5

Use the function zbus = zbuild(zdata) to obtain the bus impedance matrix for the
network in Example 9.3.

The network configuration containing resistances and reactances are specified and
the zbuild function is used as follows.

zdata = [

N = =00
W WM N =
[eNeNeoNoNeol
SO OO0
o 00 W N

Zbus = zbuild(zdata)

The result is
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Zbus =
0 + 0.161 0+ 0.08i 0+ 0.12i
0+ 0.081 0+ 0.241 0+ 0.161i
0+ 0.12i 0+ 0.161 0 + 0.34i
Example 9.6

A three-phase fault with a fault impedance Z 7 = j0.16 per unit occurs at bus 3
in the network of Example 9.1. Use the symfault function to compute the fault
current, the bus voltages and line currents during the fault.

In this example all shunt capacitances and loads are neglected and all the prefault
bus voltages are assumed to be unity. The impedance diagram in Figure 9.2(b) is
described by the variable zdata and the following commands are used.

zdata = fo 1 o© 0.2
0o 2 0 0.4
1 2 0 0.8
1 3 0 0.4
2 3 0 0.4]1;
Zbus = zbuild(zdata)
symfault (zdata, Zbus)
The result is
Zbus =
0 + 0.1600i1 0 + 0.08001 0 + 0.1200i
0 + 0.08001 0 + 0.24001 0 + 0.1600i
0 + 0.1200i 0 + 0.16001 0 + 0.34001
Enter Faulted Bus No. -> 3
Enter Fault Impedance Zf = R + j*X in
complex form (for bolted fault enter 0). Zf = j*0.16

Balanced three-phase fault at bus No. 3
Total fault current = 2.0000 Per unit

Bus Voltages during the fault in per unit

Bus Voltage Angle

No. Magnitude Degree
1 0.7600 0.0000
2 0.6800 0.0000

3 0.3200 0.0000
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Line currents for fault at bus No. 3

From . To Current Angle
Bus Bus Magnitude Degree
G 1 1.2000 -90.0000
1 2 0.1000 ~-90.0000
1 3 1.1000 -90.0000
G 2 ~ 0.8000 -90.0000
2 3 - 0.9000 =-90.0000
3 F 2.0000 -90.0000

Example 9.7

The 11-bus power system network of an electric utility company is shown in Figure
9.17.

4

:1 E‘z_ 3 d_g 10:

5 T- 6
11 T ‘ 3
O =1 I N

FIGURE 9.17
One-line diagram for Example 9.7

The transient impedance of the generators on a 100-MVA base are given below.

GEN. TRANSIENT
IMPEDANCE PU
Gen.No. R, X
1 0 020
10 0 0.15
11 0 025

The line and transformer data containing the series resistance and reactance in per
unit, and one-half of the total capacnance in per unit susceptance on a 100-MVA
base is tabulated below.
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LINE AND TRANSFORMER DATA I

Bus Bus R, X, 1B,

No. No. PU PU PU
1 2 0.00 0.06 0.0000
2 3. 008 0.30 0.0004
2 5 0.04 0.15 0.0002
2 6 0.12 045 0.0005
3 4 0.10 0.40 0.0005
3 6 004 0.40 0.0005
4 6 0.15 0.60 0.0008
4 9 0.18 0.70 0.0009
4 10 0.00 0.08 0.0000
5 7 0.05 043 0.0003
6 8 0.06 0.48  0.0000
7 8 006 0.35 0.0004
7 11 0.00 0.10 0.0000
8 9 0.052 048 0.0000

Neglecting the shunt capacitors and the loads, use zbuild(zdata) function to obtain
the bus impedance matrix. Assuming all the prefault bus voltages are equal to 1/0°,
use symfault function to compute the fault current, bus voltages, and line currents
for a bolted fault at bus 8. When using zbuild function, the generator reactances
must be included in the impedance data with bus zero as the reference bus. The
impedance data and the required commands are as follows.

% Bus Bus R X
% No. No.: pu pu
zdata = [0 1 0.00 0.20
- 0 10 0.00 0.15
0o 11 0.00 0.25
1 2 0.00 0.06
2 3 0.08 0.30
2 5 0.04 0.15
2 6 0.12 0.45
3 4 0.10 0.40
3 6 0.04 0.40
4 6 0.15 0.60
4 9 0.18 0.70
4 10 0.00 0.08
5 7 0.05 0.43
6 8 0.06 0.48
7 8 0.06 0.35
7 11 0.00 0.10
8 9 0.052 0.48




386 9. BALANCED FAULT

Zbus = zbuild(zdata)

symfault(zdata, Zbus)
The bus impedance matrix is displayed on the screen, and the three-phase short
circuit result is

Enter Faulted Bus No. -> 8

Enter Fault Impedance Zf = R + j*X in

complex form (for bolted fault enter 0). Zf = 0

Balanced three-phase fault at bus No. 8

Total fault current = 3.3319 per unit
Bus Voltages during the fault in per unit
Bus Voltage Angle
No Magnitude Degree
1 0.8082 -1.8180
2 0.7508 -2.5443
3 0.6882 -1.5987
4 0.7491 -2.4902
5 0.7007 -2.3762
6 0.5454 -1.0194
7 0.5618 -3.8128
8 0.0000 0.0000
9 0.3008 2.4499
10 0.8362 -1.4547
11 0.6866 -2.2272
Line currents for fault at bus No. 8
From To Current Angle
Bus Bus Magnitude Degree
G 1 0.9697 -82.4034
1 2 0.9697 -82.4034
2 3 0.2053 -87.8751
2 5 0.3230 -79.9626 [
2 6 0.4427  -81.6497 ]
3 6 0.3556 -88.0987 5
4 3 0.1503 -88.4042
4 6 0.3305 -82.3804
4 9 0.6229 -81.3672
5 7 0.3230 -79.9626
6 8 1.1274 -83.8944
7 8 1.5820 -84.0852
8 F 3.3319 -83.5126
9 8 0.6229 -81.3672
G 10 1.1029 -82.6275
10 4 1.1029 -82.6275
G 11 1.2601 -85.1410
11 7 1.2601 -85.1410
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Example 9.8

In Example 9.7 consider the shunt capacitors and neglect the loads. Use zbuildpi
function to obtain the bus impedance matrix. Assuming all the prefault bus volt-
ages are equal to 1/0°, use symfault function to compute the fault current, bus
voltages, and line currents for a bolted fault at bus 8.

The zbuildpi(linedata, gendata, yload) is designed to be compatible with the
power flow programs. The first argument linedata is consistent with the data re-
quired for the power flow program. The generator reactances are not included in
the linedata and must be specified separately by the gendata. The optional argu-
ment yload contains the load admittance which is generated from the power flow
solution. The loads are neglected in this example, therefore, the argument yload is
omitted. The impedance data and the required commands are as follows:

yA Bus Bus R X 1/2B

pA No. No. pu pu pu

linedata=[1 2 0.00 0.06 0.0000
2 3 0.08 0.30 0.0004
2 5 0.04 0.15 0.0002
2 6 0.12 0.45 0.0005
3 4 0.10 0.40 0.0005
3 6 0.04 0.40 0.0005
4 6 0.15 0.60 0.0008
4 9 0.18 0.70 0.0009
4 10 0.00 0.08 0.0000
5 7 0.05 0.43 0.0003
6 8 0.06 0.48 0.0000
7 8 0.06 0.35 0.0004
7 11 0.00 0.10 0.0000
8 9 0.052 0.48 0.0000];

h Gen. Ra xd’

gendata=[ 1 0 0.20
10 0 0.15
11 0 0.256];

Zbus=zbuildpi(linedata, gendata)
symfault(linedata, Zbus)

The bus impedance matrix is displayed on the screen, and the three-phase short
circuit result is

Enter Faulted Bus No. -> 8

Enter Fault Impedance Zf = R + j*X in

complex form (for bolted fault enter 0). Zf = 0
Balanced three-phase fault at bus No. 8
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Total fault current = 3.3301 per unit

Bus Voltages during the fault in per unit

Bus Voltage Angle
No. Magnitude Degree
1 0.8080 -1.8188
2 0.7506 -2.5456
3 0.6879 -1.5986
4 0.7489 -2.4915
5 0.7006 -2.3774
6 0.5451 -1.0185
7 0.5617 -3.8137
8 0.0000 0.0000
9 0.3005 2.4564
10 0.8361 -1.4553
11 0.6866 -2.2276

Line currents for fault at bus No. 8

From To Current Angle
Bus Bus Magnitude Degree
1 2 0.9704 -82.4068
2 3 0.2056 ~-87.7898
2 5 0.3230 -79.9386
2 6 0.4429 -81.6055
3 6 0.3556 -88.0454
4 3 0.1505 -88.2647
4 6 0.3308 -82.2823
4 9 0.6232 -81.3096
5 7 0.3228 -79.9261
6 8 1.1269 -83.8935
7 8 1.5818 -84.0781
8 F 3.3301 -83.5110
9 8 0.6224 -81.3606
10 4 1.1038 -82.6316
11 7 1.2604 -86.1416
Example 9.9

Repeat the symmetrical three-phase short circuit analysis for Example 9.7 consid-
ering the prefault bus voltages and the effect of load currents. The load data is as
follows:
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LOAD DATA

Bus Load Bus Load

No. MW Myvar || Noo. MW Mvar
1 0.0 0.0 7 0.0 0.0
2 0.0 0.0 8 1100 90.0
3 150.0 120.0 9 80.0 50.0
4 0.0 0.0 10 0.0 0.0
5 120.0 60.0 || 11 0.0 0.0
6 140.0 90.0

Voltage magnitude, generation schedule and the reactive power limits for the regu-
lated buses are tabulated below. Bus 1, whose voltage is specified as V1 = 1.04£0°,
is taken as the slack bus.

GENERATION DATA
Bus Voltage Generation, Mvar Limits {
No. Mag. MW Min. Max.
1 1.040
10 1.035 200.0 0.0 180.0
i1 1.030 160.0 0.0 1200

Anyone of the power flow programs can be used to obtain the prefault bus volt-
ages and the load admittance. The Ifnewton program is used which returns the
prefault bus voltage array V and the bus load admittance array yload. The required
commands are as follows. ‘

clear
basemva

h

% clears all variables from workspace.
100; accuracy = 0.0001; maxiter = 10;
Bus Bus Voltage Angle --Load-- ---Generator---Injected

% No code Mag. Degree MW Mvar MW Mvar Qmin Qmax Mvar

busdata={1 1 1.06 0 0.0 0.0 0.0 0.0 0O O 0
2 0 1.0 0 0.0 0.0 0.0 O 0O O 0
3 0 1.0 0 150.0 120.0 0.0 O 0O O 0
4 0 1.0 0 0.0 0.0 0.0 O 0 O 0
5 0 1.0 0 120.0 60.0 0.0 O 0 O 0
6 0 1.0 0 140.0 90.0 0.0 O o 0 0
7 0 1.0 0 0.0 0.0 0.0 O 0 0 0
8 0 1.0 0 110.0 90.0 0.0 © o 0 0
9 0 1.0 0 80.0 50.0 0.0 O 0 0 0
102 1.035 O 0.0 0.0 200.0 O 0O 180 0
112 1.03 0 0.0 0.0 160.0 O 0 120 0];

% Bus Bus R X 1/2B

h No. No. pu pu pu
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linedata=[1 2 0.00 0.06 0.0000 1

2 3 0.08 0.30 0.0004 1

2 6 0.12 0.45 0.0005 1

3 4 0.10 0.40 0.0005 1

3 6 0.04 0.40 0.0005 1

4 6 0.15 0.60 0.0008 1

4 9 0.18 0.70 0.0009 1

4 10 0.00 0.08 0.0000 1

5 7 0.05 0.43 0.0003 1

6 8 0.06 0.48 0.0000 1

7 8 0.06 0.35 0.0004 1

7 11 0.00 0.10 0.0000 1

8 9 0.052 0.48 0.0000 1];
% Gen. Ra Xa’
gendata=[ 1 0 0.20

10 0 0.15

11 0 0.25];
1fybus % Forms the bus admittance matrix
lfnewton % Power flow solution by Newton-Raphson method
busout % Prints the power flow solution on the screen

Zbus=zbuildpi(linedata, gendata, yload) % Zbus including load
symfault(linedata,Zbus,V)%3-phase fault including load current

The result is

Power Flow Solution by Newton-Raphson Method
Maximum Power Mismatch = 0.0000533178
No. of Iterations = 3

Bus Voltage Angle ----Load----  --Generation-- Injected
No. Mag. Degree MW Mvar MW Mvar Mvar
1 1.040 0.000 0.000 0.000 248.622 149.163 0.0
2 1.031 -0.797 0.000 0.000 0.000 0.000 0.0
3 0.997 -2.619 150.000 120.000 0.000 0.000 0.0
4 1.024 -1.737 0.000 0.000 0.000 0.000 0.0
5 0.981 -7.414 120.000 60.000 0.000 0.000 0.0
6 0.992 -3.336 140.000 90.000 0.000 0.000 0.0
7 1.014 -4.614 0.000 0.000 0.000 0.000 0.0
8 0.981 -5.093 110.000 90.000 0.000 0.000 0.0
9 0.977 -4.842 80.000 50.000 0.000 0.000 0.0
10 1.035 -0.872 0.000 0.000 200.000 144.994 0.0
11 1.020 -3.737 0.000 0.000 160.000 161.121 0.0

o
o

Total 600.000 410.000 608.622 455.278
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Enter Faulted Bus No. -> 8

Enter Fault Impedance Zf = R + j*X in

complex form (for bolted fault enter 0). Zf = 0
Balanced three-phase fault at bus No. 8

Total fault current = 3.3571 per unit
Bus Voltages during the in per unit
Bus Voltage Angle
No. Magnitude Degree
1 0.8876 -0.9467
2 0.8350 -2.0943
3 0.7321 -2.5619
4 0.7866 -3.1798
5 0.5148 -8.3043
6 0.5792 -2.4214
7 0.5179 -8.2563
8 0.0000 0.0000
9 0.3156 0.9877
10 0.8785 -1.7237
11 0.6631 ~-5.7789
Line currents for fault at bus No. 8
From To Current Angle
Bus Bus Magnitude Degree
1 2 0.9219 -73.3472
2 3 0.3321 -73.7856
2 6 0.5494 -76.3804
3 6 0.3804 -87.3283
4 3 0.1336 ~-87.2217
4 6 0.3357 -81.1554
4 9 0.6537 -81.4818
6 8 1.1974 -85.2964
7 5 0.0073 -82.5471
7 8 1.4585 -88.5207
8 F 3.3571 -85.4214
9 8 0.6538 -82.8293
10 4 1.1787 -79.4854
11 7 1.4733 -87.0395
PROBLEMS

9.1. The system shown in Figure 9.18 is initially on no load with generators oper-
ating at their rated voltage with their emfs in phase. The rating of the genera-
tors and the transformers and their respective percent reactances are marked
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on the diagram. All resistances are neglected. The line impedance is 7160 €).
A three-phase balanced fault occurs at the receiving end of the transmission
line. Determine the short-circuit current and the short-circuit MVA.

60 MVA, 30 kV
X, = 24%

Q X =16%

3 E | X =160 Q |
100 MVA

Q—D— 30/400 kV

40 MVA, 30 kV

X, = 24%

FIGURE 9.18
One-line diagram for Problem 9.1.

9.2. The system shown in Figure 9.19 shows an existing plant consisting of a
generator of 100 MVA, 30 kV, with 20 percent subtransient reactance and
a generator of 50 MVA, 30 kV with 15 percent subtransient reactance, con-
nected in parallel to a 30-kV bus bar. The 30-kV bus bar feeds a transmission
line via the circuit breaker C which is rated at 1250 MVA. A grid supply is
connected to the station bus bar through a 500-MVA, 400/30-kV transformer
with 20 percent reactance. Determine the reactance of a current limiting re-
actor in ohm to be connected between the grid system and the existing bus
bar such that the short-circuit MVA of the breaker C does not exceed.

100 MVA 50 MVA I 500 MVA

30 kV 30kV A 400/30 kV

[!]X;'=20% E!]X;'zls% A jltxt=2o%

quc'

FIGURE 9.19
One-line diagram for Problem 9.2.
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9.3. The one-line diagram of a simple power system is shown in Figure 9.20.
Each generator is represented by an emf behind the transient reactance. All
impedances are expressed in per unit on a common MVA base. All resis-
tances and shunt capacitances are neglected. The generators are operating on
no load at their rated voltage with their emfs in phase. A three-phase fault
occurs at bus 1 through a fault impedance of Z; = j0.08 per unit.

(a) Using Thévenin’s theorem obtain the impedance to the point of fault and
the fault current in per unit.
(b) Determine the bus voltages and line currents during fault.

O+ fFopo—=> oto—()
X, =01 5 =01
FIGURE 9.20

One-line diagram for Problem 9.3.

9.4. The one-line diagram of a simple three-bus power system is shown in Figure
9.21 Each generator is represented by an emf behind the subtransient reac-
tance. All impedances are expressed in per unit on a common MVA base. All
resistances and shunt capacitances are neglected. The generators are operat-
ing on no load at their rated voltage with their emfs in phase. A three-phase
fault occurs at bus 3 through a fault impedance of Z;y = j0.19 per unit.

(a) Using Thévenin’s theorem obtain the impedance to the point of fault and
the fault current in per unit.
(b) Determine the bus voltages and line currents during fault.

j0.075

FIGURE 9.21
One-line diagram for Problem 9.4.

9.5. The one-line diagram of a simple four-bus power system is shown in Figure
9.22 Each generator is represented by an emf behind the transient reactance.
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All impedances are expressed in per unit on a common MVA base. All resis-
tances and shunt capacitances are neglected. The generators are operating on
no load at their rated voltage with their emfs in phase. A bolted three-phase
fault occurs at bus 4.

(a) Using Thévenin’s theorem obtain the impedance to the point of fault and
the fault current in per unit.

(b) Determine the bus voltages and line currents during fault.

(c) Repeat (a) and (b) for a fault at bus 2 with a fault impedance of Z; =
70.0225.

j0.20  50.15

70.20  50.20

FIGURE 9,22
One-line diagram for Problem 9.5.

9.6. Using the method of building algorithm find the bus impedance matrix for
the network shown in Figure 9.23.

FIGURE 9.23
One-line diagram for Problem 9.6.
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9.7. Obtain the bus impedance matrix for the network of Problem 9.3.
9.8. Obtain the bus impedance matrix for the network of Problem 9.4.

9.9. The bus impedance matrix for the network shown in Figure 9.24 is given by

0.300 0.200  0.275
Zyus =4 | 0.200 0400  0.250
0.275 0.250 0.41875

: 70.8 2
j0.2 3 70.6
j0.4 40.8
FIGURE 9.24

One-line diagram for Problem 9.9.

There is a line outage and the line from bus 1 to 2 is removed. Using the
method of building algorithm determine the new bus impedance matrix.

9.10. The per unit bus impedance matrix for the power system of Problem 9.4 is
given by

0.0450 0.0075 0.0300
Zous = § | 0.0075 0.06375 0.0300
0.0300 0.0300 0.2100

A three-phase fault occurs at bus 3 through a fault impedance of Z; = j0.19
per unit. Using the bus impedance matrix calculate the fault current, bus
voltages, and line currents during fault. Check your result using the Zbuild
and symfault programs.

9.11. The per unit bus impedance matrix for the power system of Problem 9.5 is
given by

0.240 0.140 0.200 0.200
A 0.140 0.2275 0.175 0.175
bus =J | 0.200 0.175 0.310 0.310
0.200 0.1750 0.310 0.500
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9.12.

() A bolted three-phase fault occurs at bus 4. Using the bus impedance ma-
trix calculate the fault current, bus voltages, and line currents during fault.
(b) Repeat (a) for a three-phase fault at bus 2 with a fault impedance of
Z; = j0.0225.

(c) Check your result using the Zbuild and symfault programs.

The per unit bus impedance matrix for the power system shown in Figure
9.25 is given by

0.150 0.075 0.140 0.135
7 _ ;| 0075 01875 0.090 0.0075
bus =71 0,140 0.090 0.2533 0.210
0.135 0.0975 0.210 0.2475

A three-phase fault occurs at bus4 through a fault impedance of Z £=70.0025
per unit. Using the bus impedance matrix calculate the fault current, bus volt-
ages and line currents during fault. Check your result using the Zbuild and
symfault programs.

| J0.2 |

FIGURE 9.25
One-line diagram for Problem 9.12.

9.13.
9.14.
9.15.
9.16.

Repeat Example 9.7 for a bolted three-phase fault at bus 9.
Repeat Example 9.8 for a bolted three-phase fault at bus 9.
Repeat Example 9.9 for a bolted three-phase fault at bus 9.

The 6-bus power system network of an electric utility company is shown in
Figure 9.26. The line and transformer data containing the series resistance
and reactance in per unit, and one-half of the total capacitance in per unit
susceptance on a 100-MVA base, is tabulated below.
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O

5
O3 fo
FIGURE 9.26
One-line diagram for Problem 9.16.

LINE AND TRANSFORMER DATA |
Bus Bus R, X, 3B,
No. No. PU PU PU
1 4 0035 0225 0.0065
1 5 0025 0105 0.0045
1 6 0040 0.215 0.0055
2 4 0000 0035 0.0000
3 5 0.000 0.042 0.0000
4 6 0028 0.125 0.0035
5 6 0026 0175 0.0300
The transient impedance of the generators on a 100-MVA base are given be-
low.
GEN. TRANSIENT
IMPEDANCE, PU
Gen.No. R, X
1 0 020
2 0 015
3 0 025

Neglecting the shunt capacitors and the loads, use Zbus = zbuild(zdata)
function to obtain the bus impedance matrix. Assuming all the prefault bus
voltages are equal to 1/0°, use symfault(zdata, Zbus) function to compute
the fault current, bus voltages, and line currents for a bolted fault at bus 6.
When using Zbus = zbuild(zdata) function, the generator reactances must
be included in the zdata array with bus zero as the reference bus.
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9.17.

9.18.

In Problem 9.16 consider the shunt capacitors and neglect the loads. use
zbuildpi(linedata, gendata, yload) function to obtain the bus impedance
matrix. Assuming all the prefault bus voltages are equal to 120°, use sym-
fault(linedata, Zbus) function to compute the fault current, bus voltages,
and line currents for a bolted fault at bus 6.

Repeat the symmetrical three-phase short circuit analysis for Problem 9.16
considering the prefault bus voltages and the effect of load currents. The load
data is as follows.

LOAD DATA
Bus Load
No. MW  Mvar

1 0 0
2 0 0
3 0 0
4 100 70
5 9 30
6 160 110

Voltage magnitude, generation schedule, and the reactive power limits for
the regulated buses are tabulated below. Bus 1, whose voltage is specified as
Vi = 1.06£0°, is taken as the slack bus.

GENERATION DATA
Bus Voltage Generation, Myvar Limits
No. Mag. MW Min. Max.
1 1.060
2 1.040 150.0 0.0 1400
3 1.030 100.0 0.0 90.0

Use anyone of the power flow programs to obtain the prefault bus voltages
and the load admittance. The power flow program returns the prefault bus
voltage array V and the bus load admittance array yload.




CHAPTER

10

SYMMETRICAL COMPONENTS
AND UNBALANCED FAULT

10.1 INTRODUCTION

Different types of unbalanced faults are the single line-to-ground fault line-to-line
fault, and double line-to-ground fault.

The fault study that was presented in Chapter 9 has considered only three-
phase balanced faults, which lends itself to a simple per phase approach. Various
methods have been devised for the solution of unbalanced faults. However, since
the one-line diagram simplifies the solution of the balanced three-phase problems,
the method of symmetrical components that resolves the solution of unbalanced
circuit into a solution of a number of balanced circuits is used. In this chapter, the
symmetrical components method is discussed. It is then applied to the unbalanced
faults, which allows once again the treatment of the problem on a simple per phase
basis. Two functions are developed for the symmetrical components transforma-
tions. These are abc2se, which provides transformation from phase quantities to
symmetrical components, and sc2abc for the inverse transformation. In addition,
these functions produce plots of unbalanced phasors and their symmetrical com-
ponents. Finally, unbalanced faults are computed using the concept of symmet-
rical components. Three functions named lgfault(zdata0, zbus0, zdatal, zbusl,
zdata2, zbus2, V), lifault(zdatal, zbusl, zdata2, zbus2, V), and digfault(zdata0,
zbus0, zdatal, zbusl, zdata2, zbus2, V) are developed for the line-to-ground,
line-to-line, and the double line-to-ground fault studies.

399
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10.2 FUNDAMENTALS OF
SYMMETRICAL COMPONENTS

Symmetrical components allow unbalanced phase quantities such as currents and
voltages to be replaced by three separate balanced symmetrical components.

In three-phase system the phase sequence is defined as the order in which
they pass through a positive maximum. Consider the phasor representation of a
three-phase balanced current shown in Figure 10.1(a).
I} I?

[

I

//If’ 13

I I

(a) (b) (©)

FIGURE 10.1
Representation of symmetrical components.

By convention, the direction of rotation of the phasors is taken to be counterclock-
wise. The three phasors are written as
II=1100 =11
I} = I1/240° = oI (10.1)
I} =T11/120° = oI}

where we have defined an operator a that causes a counterclockwise rotation of
120°, such that

a =1/120° = —0.5 + 50.866
a® = 1/240° = —0.5 — j0.866 (10.2)
a® = 1/360° = 1 + ;0

From above, it is clear that
l1+a+a%2=0 (10.3)

The order of the phasors is abc. This is designated the positive phase sequence.
When the order is acb as in Figure 10.1(b), it is designated the negative phase
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sequence. The negative phase sequence quantities are represented as

I2=12/00 =12
I2 = I2/120° = ol? (10.4)
I? = I2/240° = a?I?

When analyzing certain types of unbalanced faults, it will be found that a third set
of balanced phasors must be introduced. These phasors, known as the zero phase
sequence, are found to be in phase with each other. Zero phase sequence currents,
as in Figure 10.1(c), would be designated

P=1=1 (10.5)

The superscripts 1, 2, and 0 are being used to represent positive, negative, and
zero-sequence quantities, respectively. In some texts the notation 0, +, — is used
instead of 0, 1, 2. The symmetrical components method was introduced by Dr.
C. L. Fortescue in 1918. Based on his theory, three-phase unbalanced phasors of
a three-phase system can be resolved into three balanced systems of phasors as
follows.

1. Positive-sequence components consisting of a set of balanced three-phase
components with a phase sequence abc.

2. Negative-sequence components consisting of a set of balanced three-phase
components with a phase sequence acb. "

3. Zero-sequence components consisting of three single-phase components, all
equal in magnitude but with the same phase angles.

Consider the three-phase unbalanced currents I, Ip, and I shown in Figure
10.2 (page 405). We are seeking to find the three symmetrical components of the
current such that

L=R+I1}+12
L=R+I}+1I? (10.6)
I =10+ 1! +12

According to the definition of the symmetrical components as given by (10.1),
(10.4), and (10.5), we can rewrite (10.6) all in terms of phase a components.

L=+ +12
I = I + a®I} + aI? (10.7)
I, = I? +al} + a®I2
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or
1, 1 1 1 0
I |=]1 a%® a I} (10.8)
I, 1 a a? I?

We rewrite the above equation in matrix notation as
e = A 1012 (10.9)

where A is known as symmetrical components transformation matrix (SCTM)
which transforms phasor currents I into component currents 1912, and is

1 1 1
A=|1 a2 a (10.10)
1 a a?
Solving (10.9) for the symmetrical components of currents, we have
1912 - A1 yabe (10.11)
The inverse of A is given by
1 1 1 1
A7l = 311 e 2 (10.12)
1 a2 a
From (10.10) and (10.12), we conclude that
Al = %A* (10.13)
Substituting for A= in (10.11), we have
I? TR I,
I | = 3 1 a a2 I (10.14)
I? 1 a2 a I.

or in component form, the symmetrical components are
Ig = %(Ia + Ib + Ic)
I} = Y(I, + aly + a21) (10.15)
IZ = %(Ia + a%I, + al)

From (10.15), we note that the zero-sequence component of current is equal to
one-third of the sum of the phase currents. Therefore, when the phase currents sum

e
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to zero, e.g., in a three-phase system with ungrounded neutral, the zero-sequence
current cannot exist. If the neutral of the power system is grounded, zero-sequence
current flows between the neutral and the ground.

Similar expressions exist for voltages. Thus the unbalanced phase voltages in
terms of the symmetrical components voltages are

Vo=Vo0+V2I+V2
Vs = VO + 0V} + aV2 (10.16)
Ve = VI +aV}! + a?V2

or in matrix notation
vabe = A Vo2 (10.17)
The symmetrical components in terms of the unbalanced voltages are

Vi=3(Vo+Vo+ Vo)
Vi=Li(Ve+aW+d®Ve) (10.18)
V2 =LV, +a?Vy+aV)

or in matrix notation
V012 = A1 yabe (10.19)

The apparent power may also be expressed in terms of the symmetrical compo-
nents. The three-phase complex power is

Siag) = Ve 1% (10.20)
Substituting (10.9) and (10.17) in (10.20), we obtain
. T *
See = (AVY2) (A1)
= VORRT AT p*p012* (10.21)

Since AT = A, then from (10.13), AT A* = 3, and the complex power becomes

S(ag) =3 (V012T1012*)
= 3VOI%" 4+ 3Vt + 3V (10.22)

Equation (10.22) shows that the total unbalanced power can be obtained from the
sum of the symmetrical component powers. Often the subscript a of the symmet-
rical components are omitted, e.g., I 0 1! and I? are understood to refer to phase a.
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Transformation from phase quantities to symmetrical components in MAT.
LAB is very easy. Once the symmetrical components transformation matrix A is
defined, its inverse is found using the MATLAB function inv. However, for quick
calculations and graphical demonstration, the following functions are developed
for symmetrical components analysis.

sctm The symmetrical components transformation matrix A is defined in this
script file. Typing sctm defines A.

phasor(F) This function makes plots of phasors. The variable F may be expressed
in an n x 1 array in rectangular complex form or as an n x 2 matrix. In the
latter case, the first column is the phasor magnitude and the second column
is its phase angle in degree.

Fy12 = abe2se(F,;.) This function returns the symmetrical components of a set
of unbalanced phasors in rectangular form. Fy;. may be expressed ina 3 x 1
array in rectangular complex form or as a 3 x 2 matrix. In the latter case,
the first column is the phasor magnitude and the second column is its phase
angle in degree for a, b, and c phases. In addition, the function produces a
plot of the unbalanced phasors and its symmetrical components.

Fype = sc2abe(Fy;2) This function returns the unbalanced phasor in rectangular
form when symmetrical components are specified. Fy;5 may be expressed
in a 3 x 1 array in rectangular complex form or as a 3 x 2 matrix. In the
latter case, the first column is the phasor magnitude and the second column
is its phase angle in degree for the zero-, positive-, and negative-sequence
components, respectively. In addition, the function produces a plot of the
unbalanced phasors and its symmetrical components.

Zo12 =2zabc2sc(Z ) This function transforms the phase impedance matrix to the
sequence impedance matrix, given by (10.30).

F}, =rec2pol(F;) This function converts the rectangular phasor F, into polar form
Fp.

F = pol2rec(F;,) This function converts the polar phasor Fj, into rectangular form
EF,..

Example 10.1

Obtain the symmetrical components of a set of unbalanced currents I, =1.6/25°,
Iy =1.0/180°, and I, = 0.9/132°.
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The commands
Iabc = [1.6 25
1.0 180
0.9 132];
1012 = abc2sc(labc); % Symmetrical components of phase a
1012p= rec2pol(I012) % Rectangular to polar form
result in
I012P =

0.4512 96.4529
0.9435 -0.0550
0.6024 22.3157

and the plots of the phasors are shown in Figure 10.2.

I a-b-cset I Zero-sequence set
a
nnIn
Iy
1
I Positive-sequence set Negative-sequence set
I
I
I
I
I
FIGURE 10.2

Resolution of unbalanced phasors into synimetrical components.

Example 10.2

The symmetrical components of a set of unbalanced three-phase voltages are V9=
0.6£90°, V! = 1.0/30°, and V2 = 0.8/—30°. Obtain the original unbalanced
phasors.

The commands
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Vo012 = [0.6 90
1.0 30
0.8 -30];
Vabc = sc2abc(V012);%Unbalanced phasor to symmetrical comp.
Vabcp= rec2pol(Vabc) % Rectangular to polar form
result in
Vabep =

1.7088 24.1825
0.400 90.0000
1.7088 155.8175

and the plots of the phasors are shown in Figure 10.3.

a-b-cset Zero-sequence set
V;; Va Vao V},O Vco
Vs
Positive-sequence set Negative-sequence set
V!>2
1 1
Ve Va

TN

‘/62 Va,2
‘/b 1

FIGURE 10.3
Transformation of the symmetrical components into phasor components.

10.3 SEQUENCE IMPEDANCES

This is the impedance of an equipment or component to the current of different se-
quences. The impedance offered to the flow of positive-sequence currents is known
as the positive-sequence impedance and is denoted by Z!. The impedance of-
fered to the flow of negative-sequence currents is known as the negative-sequence
impedance, shown by Z2. When zero-sequence currents flow, the impedance is
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called the zero-sequence impedance, shown by Z°. The sequence impedances of
transmission lines, generators, and transformers are considered briefly here.

10.3.1 SEQUENCE IMPEDANCES
OF Y-CONNECTED LOADS

A three-phase balanced load with self and mutual elements is shown in Figure 10.4.
The load neutral is grounded through an impedance Z,.

FIGURE 104
Balanced Y-connected load.

The line-to-ground voltages are

Vo= Zslo+ Zinlp + Zin I + ZnIy
Vo = Zpdy + 21y + Zp 1.+ 2,1, (10.23)
Ve = Zply + ZpnIy + Zsc + ZnIy

From Kirchhoff’s current law, we have
L=I,+ L+ 1, (10.24)
Substituting for I, from (10.24) into (10.23) and rewriting this equation in matrix

form, yields

Ve Zn+ 2y Zm+2Zn Zs+ 2, I.

Va} [Z3+Zn I+ Zy Zm+Zn][Ia

or in compact form

Vabc — ZabcIabc (1026)
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where

Zs+Zn Zm+Zn Zm+ Zn
2% = | Zp+Zn Zs+Zn Zm+ 2y (10.27)

Writing V¢ and I%%° in terms of their symmetrical components, we get
AVOZ — Zabe p1012 (10.28)
Multiplying (10.28) by A~!, we get

V012 — A—lzabcAIOI2
a a
= 70121012 (10.29)

where
7012 — A-lzabcp (10.30)

Substituting for Z2%, A, and A~! from (10.27), (10.10), and (10.12), we have

Z012 —

1[1 Y L[ 2420 Zm+Zn Zm+Z,][1 1 1
1 a a® || Zn+Zn Zs+Zn Zm+2Zn||1 a® a | 1031)
2 I+ Zn Zy+Zn  Zs+ 2, 2

1 a a 1 a a

Performing the above multiplications, we get

Zs+32,+22Z, 0 0
Z%2 = 0 Zs— Zm, 0 (10.32)
0 0 Zs— Zm
When there is no mutual coupling, we set Z,, = 0, and the impedance matrix
becomes
Zs+3Z, 0 0
Z012 = 0 Zs 0 (10.33)
0 0 Z

. The impedance matrix has nonzero elements appearing only on the principal diago-
nal, and it is a diagonal matrix. Therefore, for a balanced load, the three sequences
are independent. That is, currents of each phase sequence will produce voltage
drops of the same phase sequence only. This is a very important property, as it
permits the analysis of each sequence network on a per phase basis.
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10.3.2 SEQUENCE IMPEDANCES
OF TRANSMISSION LINES

Transmission line parameters were derived in Chapter 4. For static devices such
as transmission lines, the phase sequence has no effect on the impedance, because
the voltages and currents encounter the same geometry of the line, irrespective of
the sequence. Thus, positive- and negative-sequence impedances are equal, i.e.,
7' =72

In deriving the line parameters, the effect of ground and shielding conductors
were neglected. Zero-sequence currents are in phase and flow through the a,b,c con-
ductors to return through the grounded neutral. The ground or any shielding wire
are effectively in the path of zero sequence. Thus, Z9, which includes the effect
of the return path through the ground, is generally different from Z ! and Z2. The
determination of the zero sequence impedance with the presence of earth neutral
wires is quite involved and the interested reader is referred to the Carson’s formula
[14]. To get an idea of the order of Z° we will consider the following simplified
configuration. Consider 1-m length of a three-phase line with equilaterally spaced
conductors as shown in Figure 10.5. The phase conductors carry zero-sequence
(single-phase) currents with return paths through a grounded neutral. The ground
surface is approximated to an equivalent fictitious conductor located at the average
distance D, from each of the three phases. Since conductor n carries the return
current in opposite direction, we have

R+ +12+1,=0 : (10.34)

I

D D
zg@i{—D—»\img
Dy,

Ground

[TTTTTTITTT]
O I,

FIGURE 10.5
Zero-sequence current flow with earth return.
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Since I? = I? = I?, we have |
I, =-3I° (10.35)

Utilizing the relation for the flux linkages of a conductor in a group expressed by
(4.29), the total flux linkage of phase a conductor is

_ 1 1 1 1

Ago =2 x 1077 <131nﬁ +L?1nB + Igln—D— + InlnD—n) (10.36)
Substituting for ID, I, and I, in terms of I?, we get
1 1 1 1
— -770 il In — i i
Aao =2 x10 Ia(lnrl+ nD+lnD 3lnDn)
D3

=2x107"I%In 2 Wb/m (10.37)

7' D?

Since Ly = Ag /12, the zero sequence inductance per phase in mH per kilometer
length is

D3
Lo=0.2In -1

DD3

D D
=0.2In o +3 (0.2ln —Dﬁ) mH/Km (10.38)

The first term above is the same as the positive-sequence inductance given by
(4.33). Thus the zero sequence reactance can be expressed as

X%=x'43x, (10.39)

where
D,
Xn=2nf (0.2ln 3> mS2/km (10.40)

The zero-sequence impedance of the transmission line is more than three times
larger than the positive- or negative-sequence impedance.

10.3.3 SEQUENCE IMPEDANCES
OF SYNCHRONOUS MACHINE

The inductances of a synchronous machine depend upon the phase order of the
sequence current relative to the direction of rotation of the rotor. The positive-
sequence generator impedance is the value found when positive-sequence current
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flows from the action of an imposed positive-sequence set of voltages. We have
seen that the generator positive-sequence reactance varies, and in Section 9.2 one of
the reactances X, X, or X4 was used for the balanced three-phase fault studies.

When negative-sequence currents are impressed in the stator, the net flux in
the air gap rotates at opposite direction to that of the rotor. That is, the net flux
rotates at twice synchronous speed relative to the rotor. Since the field voltage is
associated with the positive-sequence variables, the field winding has no influence.
Consequently, only the damper winding produces an effect in the quadrature axis.
Hence, there is no distinction between the transient and subtransient reactances in
the quadrature axis as there is in the direct axis. The negative-sequence reactance
is close to the positive-sequence subtransient reactance, i.e.,

X2~ X, (10.41)

Zero-sequence impedance is the impedance offered by the machine to the flow
of the zero-sequence current. We recall that a set of zero sequence currents are
all identical. Therefore, if the spatial distribution of mmf is assumed sinusoidal,
the resultant air-gap flux would be zero, and there is no reactance due to arma-
ture reaction. The machine offers a very small reactance due to the leakage flux.
Therefore, the zero-sequence reactance is approximated to the leakage reactance,
ie.,

X%~ X, (10.42)

10.3.4 SEQUENCE IMPEDANCES
OF TRANSFORMER

In Chapter 3 we obtained the per phase equivalent circuit for a three-phase trans-
former. In power transformers, the core losses and the magnetization current are on
the order of 1 percent of the rated value; therefore, the magnetizing branch is ne-
glected. The transformer is modeled with the equivalent series leakage impedance.
Since the transformer is a static device, the leakage impedance will not change
if the phase sequence is changed. Therefore, the positive- and negative-sequence
impedances are the same. Also, if the transformer permits zero-sequence current
flow at all, the phase impedance to zero-sequence is equal to the leakage impedance,
and we have

=72'=2%=2, (10.43)

From Section 3.9.1, we recall that in a Y-A, or a A-Y transformer, the positive-
sequence line voltage on HV side leads the corresponding line voltage on the
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LV side by 30°. For the negative-sequence voltage the corresponding phase shift
is —30°. The equivalent circuit for the zero-sequence impedance depends on the
winding connections and also upon whether or not the neutrals are grounded. Fig-
ure 10.6 shows some of the more common transformer configurations and their
zero-sequence equivalent circuits. We recall that in a transformer, when the core
reluctance is neglected, there is an exact mmf balance between the primary and
secondary. This means that current can flow in the primary only if there is a cur-
rent in the secondary. Based on this observation we can check the validity of the
zero-sequence circuits by applying a set of zero-sequence voltage to the primary
and calculating the resulting currents.

(a) Y-Y connections with both neutrals grounded — We know that the zero se-
quence current equals the sum of phase currents. Since both neutrals are grounded,
there is a path for the zero sequence current to flow in the primary and secondary,
and the transformer exhibits the equivalent leakage impedance per phase as shown
in Figure 10.6(a).

(b) Y-Y connection with the primary neutral grounded — The primary neutral
is grounded, but since the secondary neutral is isolated, the secondary phase current
must sum up to zero. This means that the zero-sequence current in the secondary
is zero. Consequently, the zero sequence current in the primary is zero, reflecting
infinite impedance or an open circuit as shown in Figure 10.6(b).

(c) Y-A with grounded neutral - In this configuration the primary currents
can flow because there is zero-sequence circulating current in the A-connected
secondary and a ground return path for the Y-connected primary. Note that no zero-
sequence current can leave the A terminals, thus there is an isolation between the
primary and secondary sides as shown in Figure 10.6(c).

(d) Y-A connection with isolated neutral - In this configuration, because the
neutral is isolated, zero sequence current cannot flow and the equivalent circuit re-
flects an infinite impedance or an open as shown in Figure 10.6(d).

(¢) A-A connection - In this configuration zero-sequence currents circulate
in the A-connected windings, but no currents can leave the A terminals, and the
equivalent circuit is as shown in Figure 10.6(¢).

Notice that the neutral impedance plays an important part in the equivalent
circuit. When the neutral is grounded through an impedance Z,, because I, =3Iy,
in the equivalent circuit the neutral impedance appears as 32, in the path of Ip.
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Zero-sequence circuit
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FIGURE 10.6
Transformer zero-sequence equivalent circuits.
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Example 10.3

A balanced three-phase voltage of 100-V line-to-neutral is applied to a balanced
Y-connected load with ungrounded neutral as shown in Figure 10.7. The three-
phase load consists of three mutually-coupled reactances. Each phase has a series
reactance of Z; = 512 (1, and the mutual coupling between phases is Z,,, = 74 Q.

o— Ia’
_'_
I
o— —
+
Va 1,

O—

FIGURE 10.7
Circuit for Exampie 10.3.

(a) Determine the line currents by mesh analysis without using symmetrical com-
ponents.
(b) Determine the line currents using symmetrical components.

(2) Applying KVL to the two independent mesh equations yields

Zolo + ZinIy = Zsly— Tl = Vy — Vi = |V L7 /6
ZIy+ Zpl, — ZI, — Iyy=V, -V, = lVLIZ—-ﬂ'/2

Also from KCL, we have

L+I,+I=0

Writing above equations in matrix form, results in

(Zs = Zm) —(Zs~ Z) 0 I, \ AV
0 (Zs — Zp) 44-@@}[@]:[nﬂbmm}
1 1 1 . 0

or in compact form

b
zmeshIa ‘= mesh
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Solving the above equations results in the line currents
b —
I%¢ = Zmesn 1‘[mesh
The following commands

% (a) Solution by mesh analysis
Zs=j*12; Zm=j*4; Va = 100; VL=Va*sqrt(3);
Z= [(Zs-Zm) -(Zs-Zm) 0

0 (Zs-Zm) -(Zs-Zm)

1 1 1 1
V=[VL*cos (pi/6)+j*VL*sin(pi/6)

VLxcos(-pi/2)+j*VL*sin(-pi/2)
0 1;

Y=inv(Z)
Iabc=Y*V; % Line currents (Rectangular form)
Iabcp=[abs(Iabc), angle(Iabc)*180/pil 4 Line currents (Polar)

result in
Iabep =
12.5 -90.0
12.5 160.0
12.5 30.0

(b) Using the symmetrical components method, we have

012 _ 70127012
VHe =71

Vo012 — [
and from (10.32)

Zs+ 27 0 0
7012 — 0 Zy— Zm 0

where

oo
| SO |

0 0 Zs—Zm
for the sequence components of currents, we get
1012 — [2012]—1V012

We write the following commands
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% (b) Solution by symmetrical components method ‘
2012=[Zs+2%Zm O 0 % Symmetrical components matrix
0 Zs-Zm O
0 0 Zs-Zm];
V012=[0; Va ; 0]; 4Symmetrical components of phase voltages
1012=inv(Z012)*V012; 7Symmetrical components of line currents
a=cos(2*pi/3)+j*sin(2*pi/3);
A=[ 1 1 1; 1 a2 a; 1 a a"2]; % Transformation matrix
Iabc=A*1012; % Line currents (Rectangular form)
Tabcp=[abs(Iabc), angle(Iabc)*180/pi] % Line currents (Polar)

which result in

Iabcp =
12.5 -90.0
12.5 150.0
12.5 30.0

This is the same result as in part (a).

Example 10.4

A three-phase unbalanced source with the following phase-to-neutral voltages

200 £25°
vebe — | 100 /—-155°
80 £100°

is applied to the circuit in Figure 10.4 (page 407). The load series impedance per
phase is Z; = 84 j24 and the mutual impedance between phases is Z,,, = j4. The
load and source neutrals are solidly grounded. Determine

(2) The load sequence impedance matrix Z%12 = A—1Z7abcA

(b) The symmetrical components of voltage.

(c) The symmetrical components of current.

(d) The load phase currents.

(¢) The complex power delivered to the load in terms of symmetrical components,
Sap = (V13" + Vi I + V™).

(f) The complex power delivered to the load by summing up the power in each
phase, Sz = VoI + VR I} + VI

We write the following commands




Vabc

Zabc

Z012
V012
V012p=
1012 =
1012p=
Iabc =
Iabcp=
S3ph =3
Vabcr =
j*sin(p
S3ph=(V

o
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(200 25

100 -155

80  100];
[8+j*24 j*a j*4

j*4  8+j%24 j*a
j*4 j*4 8+j*24];

zabc2sc(Zabc) % Symmetrical components of impedance
abc2sc(Vabce) ; % Symmetrical components of voltage
rec2pol(V012) % Rectangular to polar form
inv(Z012)%V012; % Symmetrical components of current
rec2pol(I012) % Rectangular to polar form
sc2abc(1012); % Phase currents
rec2pol(labc) % Rectangular to polar form

*(V012.?)*conj(1012)%Power using symmetrical components
Vabc(:, 1).*(cos(pi/180*Vabc(:, 2)) +...
i/180%Vabc(:, 2)));
abcr. ’)*conj (Iabc)
% Power using phase currents and voltages

The result is

2012 =

1012p

Iabcp

S3ph

|

S3ph

8.00 + 32.00i 0.00 + 0.00i 0.00 + 0.00i
0.00 + 0.00i 8.00 + 20.00i 0.00 + 0.00i
0.00 - 0.00i 0.00 - 0.00i 8.00 + 20.00i
47 .7739 57.6268
112.7841 -0.0331
61.6231 45.8825

1.4484 -18.3369

5.2359 -68.2317

2.8608 -22.3161

8.7507 -47.0439
5.2292 143.2451
3.0280 39.0675

9.0471e+002+ 2.3373e+0031

9.0471e+002+ 2.3373e+003i
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10.4 SEQUENCE NETWORKS
OF A LOADED GENERATOR

Figure 10.8 represents a three-phase synchronous generator with neutral grounded
through an impedance Z,,. The generator is supplying a three-phase balanced load,

I,

—0
+

+0

5 Vi

||}-—

FIGURE 10.8
Three-phase balanced source and impedance.

The synchronous machine generates balanced three-phase internal voltages and is
represented as a positive-sequence set of phasors

1
EW=[ﬁ]@ (10.44)
a

The machine is supplying a three-phase balanced load. Applying Kirchhoff’s volt-
age law to each phase we obtain

Vo= E, - ZsIa - ZnIn
Vo =By — ZsIy — 2,1, ‘ (10.45)
Vc = Ec - ZcIé - ZnIn

Substituting for I,, = I, + I + I, and writing (10.45) in matrix form, we get

V:z Ea Zs + Zn Zn Zn I a
Wl=|EB|-| 2. 2Z+2, 2, I | (10.46)

Ve E. v/ Zn Zs+ Zy I,
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or in compact form, we have
Va.bc — Eabc _ ZabcIabc (1047)

where V¢ is the phase terminal voltage vector and Ieb¢ is the phase current vec-
tor. Transforming the terminal voltages and current phasors into their symmetrical
components results in

AVI? = AEQ? — Z%° ALY (10.48)
Multiplying (10.48) by A~1, we get
Vng — E212 _ A—lzabcA1212

= B2 — z0121012 (10.49)
where
1 1 1 1 Zs+ 2y, Zn Zn 1 1 1
Z012—§ 1 a a? Zn Zs+ Zp Zn 1 a2 a
1 a® a Zn Zn Zs+ Zn 1 a a®
(10.50)
Performing the above multiplications, we get
Zs+3Z2, O 0 ] zZ° 0 o0
Z0? = 0 Z, 0 |=|0 Z' o (10.51)
0 0 Zs | 0 0 2?2
Since the generated emf is balanced, there is only positive-sequence voltage, i.e.,
0
E* = | E, (10.52)
U

Substituting for EQ'2 and Z%'2 in (10.49), we get

Vo 0 z° 0 O 19
14 E,|-]10 2t 0 11 (10.53)
V2 0 0 o0 2z? I?

Since the above equation is very imponant,'we write it in component form, and we
get

V2=0-20

Vl=E,- 21} (10.54)
V2=0-2%12
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I + + +
Ea© 1% V2 Vo

| 5 5 3
FIGURE 10.9

Sequence networks: (a) Positive-sequence; (b) negative-sequence; (c) zero-sequence.

The three equations given by (10.54) can be represented by the three equivalent
sequence networks shown in Figure 10.9.
We make the following important observations.

¢ The three sequences are independent.

e The positive-sequence network is the same as the one-line diagram used in
studying balanced three-phase currents and voltages.

e Only the positive-sequence network has a voltage source. Therefore, the
positive-sequence current causes only positive-sequence voltage drops.

o There is no voltage source in the negative- or zero-sequence networks.

¢ Negative- and zero-sequence currents cause negative- and zero-sequence
voltage drops only.

e The neutral of the system is the reference for positive-and negative-sequence
networks, but ground is the reference for the zero-sequence networks. There-
fore, the zero-sequence current can flow only if the circuit from the system
neutrals to ground is complete.

¢ The grounding impedance is reflected in the zero sequence network as 3Z,,.

e The three-sequence systems can be solved separately on a per phase basis.
The phase currents and voltages can then be determined by superposing their
symmetrical components of current and voltage respectively.

We are now ready with mathematical tools to analyze various types of unbalanced
faults. First, the fault current is obtained using Thévenin’s method and algebraic
manipulation of sequence networks. The analysis will then be extended to find the
bus voltages and fault current during fault, for different types of faults using the
bus impedance matrix.
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10.5 SINGLE LINE-TO-GROUND FAULT

Figure 10.10 illustrates a three-phase generator with neutral grounded through
impedance Z,.

Io
—
+
I,=0 Vol Z5
— 40
+
I:=0
— Vi
+
Ve _ _

FIGURE 10.10
Line-to-ground fault on phase a.

Suppose a line-to-ground fault occurs on phase a through impedance Zy.
Assuming the generator is initially on no-load, the boundary conditions at the fault
point are

Vo =21, (10.55)
IL=I1.,=0 (10.56)
Substituting for I, = I, = 0, the symmetrical components of currents from (10.14)
are
19 1 11 1 I,
I | = 3|1 @ a2 0 (10.57)
I? 1 a2 a 0
From the above equation, we find that
1
P=1l=1’= 3l (10.58)

Phase @ voltage in terms of symmetrical components is

Vo=Vo4+VI4+V? (10.59)
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Substituting for V), V!, and V2 from (10.54) and noting I? = I} = 2, we get
Vo=FEo—(Z'+ 2%+ 2010 (10.60)

where Z° = Z; + 3Z,,. Substituting for V, from (10.55), and noting I, = 319, we
get

3Z;I0 = E, — (2" + 2% + Z)1° (10.61)
or
E,
0 __ a
L= gyzrrmraz, (10.62)
The fault current is
I, =3I = 3Ea : (10.63)

21+ 22+ 20437

Substituting for the symmetrical components of currents in (10.54), the symmetri-
cal components of voltage and phase voltages at the point of fault are obtained.

Equations (10.58) and (10.62) can be represented by connecting the sequence
networks in series as shown in the equivalent circuit of Figure 10.11. Thus, for line-
to-ground faults, the Thévenin impedance to the point of fault is obtained for each
sequence network, and the three sequence networks are placed in series. In many
practical applications, the positive- and negative-sequence impedances are found
to be equal. If the generator neutral is solidly grounded, Z,, = 0 and for bolted
faults Z¢ = 0.

1 7l 2 72 0 70
722 I 2212 2L,
+ +
Ea, Va2 Vao
T 3Z;
g I

FIGURE 10.11
Sequence network connection for line-to-ground fault,
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10.6 LINE-TO-LINE FAULT

Figure 10.12 shows a three-phase generator with a fault through an impedance
Zy between phases b and c. Assuming the generator is initially on no-load, the
boundary conditions at the fault point are

Vo = Ve= 251y (10.64)
Iy+1,=0 (10.65)
I,=0 (10.66)
Substituting for I, = 0, and I, = —1I, the symmetrical components of currents
from (10.14) are
I° 1 1 1 1 0
Il | = 3|1 @ a? I (10.67)
I? 1 a? a -1

From the above equation, we find that

=0 (10.68)
Il = %(a —a))I, (10.69)
I2 = -;;(cf —a)l, (10.70)

FIGURE 10.12
Line-to-line fault between phase b and c.
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Also, from (10.69) and (10.70), we note that
I} =12 (10.71)
From (10.16), we have

Vo= Ve =(a® —a)(V; - V)

Substituting for V! and V2 from (10.54) and noting I2 = —I?, we get
(@® - a)[Eq — (Z2* + Z))I}] = 741, (10.73)
Substituting for I from (10.69), we get

371
?)(a? — a)

E,—(Z'+ 21} = z; @ a (10.74)

Since (@ — a?)(a® — a) = 3, solving for I! results in

Il = Zl—”@;-m (10.75)
The phase currents are
I, 1 1 1 0
[Ib]=[1 a? aJ[Ig] (10.76)
I. 1 a a® -1l
The fault current is
Iy=—I,=(a® - a)I! (10.77)
or
Iy = —3V31I (10.78)

Substituting for the symmetrical components of currents in (10.54), the symmetri-
cal components of voltage and phase voltages at the point of fault are obtained.

Equations (10.71) and (10.75) can be represented by connecting the positive-
and negative-sequence networks in opposition as shown in the equivalent circuit of
Figure 10.13. In many practical applications, the positive- and negative-sequence
impedances are found to be equal. For a bolted fault, Z r=0.
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AN b l Z2 12 l
YY) > 7YY\ >
+ +

E(Y) y V2
1 =& ]

—

FIGURE 10.13
Sequence network connection for line-to-line fault.

10.7 DOUBLE LINE-TO-GROUND FAULT

Figure 10.14 shows a three-phase generator with a fault on phases b and c through
an impedance Z; to ground. Assuming the generator is initially on no-load, the
boundary conditions at the fault point are

Vo= Vo= Zi(Ip+ L) (10.79)
L=I4+I}+12=0 (10.80)

From (10.16), the phase voltages V; and V. are

FIGURE 10.14
Double line-to-ground fault.
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Vo = V2 +a?V! +aV? (10.81)
Ve=V2+aV} +a?V? (10.82)

Since V;, = V, from above we note that
vi=v? (10.83)
Substituting for the symmetrical components of currents in (10.79), we get
Vb = Z;(I) + oI} + aI? + IO + al! + aI2)
= Z;(2I0 - I} — I?%)
=321 (10.84)
Substituting for V;, from (10.84) and for V.2 from (10.83) into (10.81), we have
3Z;10 = V2 + (a? + a)V}
=V)-vl (10.85)

Substituting for the symmetrical components of voltage from (10.54) into (10.85)
and solving for I?, we get ‘

E,- 2711

PR=--2_""a 10.86

@ zZ%+ 32 i ( )

Also, substituting for the symmetrical components of voltage in (10.83), we obtain

E,—- 21}
@=—J%ﬁ—£ (10.87)
Sﬁbstituting for I and I2 into (10.80) and solving for I}, we get
Eq

Ik (10.88)

Z2(Z9+3Z;)
Z1+ VARY ARSI
Equations (10.86)(10.88) can be represented by connecting the positive-sequence
impedance in series with the parallel combination of the negative-sequence and
zero-sequence networks as shown in the equivalent circuit of Figure 10.15. The
value of I} found from (10.88) is substituted in (10.86) and (10.87), and 13 and I?

are found. The phase currents are then found from (10.8). Finally, the fault current
is obtained from

I;=I+I,=3° (10.89)
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Z1 I} Z2 I? l AR l
YO\ T2 YN T YT
| + + +
5(Y) v V2 Vo
T 3%;
FIGURE 10.15

Sequence network connection for double line-to-ground fault.

Example 10.5

The one-line diagram of a simple power system is shown in Figure 10.16. The
neutral of each generator is grounded through a current-limiting reactor of 0.25/3
per unit on a 100-MVA base. The system data expressed in per unit on a common
100-MVA base is tabulated below. The generators are running on no-load at their
rated voltage and rated frequency with their emfs in phase.

Determine the fault current for the following faults.

(a) A balanced three-phase fault at bus 3 through a fault impedance Z; = 50.1
per unit. '

(b) A single line-to-ground fault at bus 3 through a fault impedance Z; =
70.10 per unit.

(c) A line-to-line fault at bus 3 through a fault impedance Z; = 50.1 per unit.

(d) A double line-to-ground fault at bus 3 through a fault impedance Z; =
j0.1 per unit.

Item Base MVA Voltage Rating X! X2 X0
Gi1 100 20kV 0.15 0.15 0.05
G 100 20kV 0.15 0.15 0.05
T 100 20/220 kV 0.10 0.10 0.10
T3 100 20/220 kV 0.10 010 0.10
Lo 100 220kV 0.125 0.125 0.30
Lis 100 220kV 0.15 015 035
Los 100 220kV 025 025 07125
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SN,
pREA

TS

FIGURE 10.16
The one-line diagram for Example 10.5.

The positive-sequence impedance network is shown in Figure 10.17.

70.15 70.15
j0.1 0.1
1 2

§0.035714 70.059524
§0.071428

FIGURE 10.17
Positive-sequence impedance diagram for Example 10.5.

To find Thévenin impedance viewed from the faulted bus (bus 3), we convert
the delta formed by buses 123 to an equivalent Y as shown in Figure 10.17(b).

(j0.125)(j0.15) _
70.525

~ (40.125)(50. 25)
70.525

Zis = J0.0357143

Zas = 70.0595238
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(015)(025) _ 4 6714286

3 70.525
Combining the parallel branches, the positive-sequence Thévenin impedance is

10.2857143)(50.3095238)
7 = U 0.0714286
33 50.5952381 +J

= j0.1485714 + j0.0714286 = 50.22

This is shown in Figure 10.18(a).

70.22 70.22
' YY) o SN O
O O
(a) Positive-sequence network (b) Negative-sequence network
FIGURE 10.18

Reduction of the positive-sequence Thévenin ecjuivalent network.

Since the negative-sequence impedance of each element is the same as the positive-
sequence impedance, we have

Z2, = Z1, = j0.22

and the negative-sequence network is as shown in Figure 10.18(b). The equivalent
circuit for the zero-sequence network is constructed according to the transformer
winding connections of Figure 10.6 and is shown in Figure 10.19.

To find Thévenin impedance viewed from the faulted bus (bus 3), we convert
the delta formed by buses 123 to an equivalent Y as shown in Figure 10.19(b).

(j0.30)(50.35)
g = -2 = 0. 42
15 713625 . 30 '07706
(50.30)(j0.7125) .
= = 40.1568
Zos 13695 0.1568807
(j0.35)(j0.7125)
Z3s = = 50.1830257
3s 71.3625 70.1830

Combining the parallel branches, the zero-sequence Thévenin impedance is

o (j0.4770642)(j0.2568807)
_ 18302
Z33 50.7339449 +70.1830275

= j0.1669725 + j0.1830275 = j0.35
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J0.077064 70.156881
J0.183026

FIGURE 10.19
Zero-sequence impedance diagram for Example 10.5.

70.35

Y

FIGURE 10.20
Zero-sequence network for Example 10.5.

The zero-sequence impedance diagram is shown in Figure 10.20.

(2) Balanced three-phase fault at bus 3.
Assuming the no-load generated emfs are equal to 1.0 per unit, the fault cur-
rent is

By =20 10 o0
3 ZL+ 275 jo22+401 0P
= 820.1/-90° A

(b) Single line-to-ground fault at bus 3.

From (10.62), the sequence components of the fault current are
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a
B=n=p=—r Y0
Z33+ Z33+ Z33 + 325
B 1.0
T §0.22 + 50.22 + 50.35 + 3(50.1)
= —30.9174 pu

The fault current is

g 1 1 1 n 319 ~52.7523
El=]|1a a Rl=|0 |= 0 pu
Ig 1 a a2 || 1§ 0 0

(c) Line-to line fault at bus 3.
The zero-sequence component of current is zero, i.e.,

=
From (10.75), the positive- and negative-sequence components of the fault current
are
Vi _ 1
ZL+ 2%+ Zf  j0.22 4+ j0.22 + 0.1

=-I= = —4j1.8519 pu

The fault current is

Ig 1 1 1 0 0
Bl=|14d a —41.8519 | = | —3.2075
IS 1 a da? §1.8519 3.2075

(d) Double line-to line-fault at bus 3.
From (10.88), the positive-sequence component of the fault current is

Vs‘z()) 1

I} = = = —42.6017 pu
22,(28,+32;) . 70.22(;0.35+0.3)
Zis+ iy, 022 02035453
The negative-sequence component of current from >(10.87) is
171 . )
2o _Viloy — Zssls _ 1 (j0.22)(=j2.6017) _ 71,0438 pu
3 Z2 §0.22 '
The zero-sequence component of current from (10.86) is
171 ) .
19— Vo)~ Zssls 1 (j0.22)(—52.6017) _ 10,6579 pu

2% +3Z; 70.35 + j0.3
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and the phase currents are

g 11 1 70.6579 0
Bl=]|1a® a —j2.6017 | = | 4.058/165.93°
$ 1 a a? 71.9438 4.058/14.07°

The fault current is

I(F) = I} + I = 1.9732/90°

10.8 UNBALANCED FAULT ANALYSIS
USING BUS IMPEDANCE MATRIX

We have seen that when the network is balanced, the symmetrical components
impedances are diagonal, so that it is possible to calculate Zy,s separately for
zero-, positive-, and negative-sequence networks. Also, we have observed that for
a fault at bus k, the diagonal element in the k axis of the bus impedance matrix
Zypys is the Thévenin impedance to the point of fault. In order to obtain a solution
for the unbalanced faults, the bus impedance matrix for each sequence network is
obtained sepgrately, then the sequence impedances Z%j, Z14, and Z2, are con-
nected together as described in Figures 10.11, 10.13, and 10.15. The fault formulas
for various unbalanced faults is summarized below. In writing the symmetrical
components of voltage and currents, the subscript a is left out and the symmetrical
components are understood to refer to phase a.

10.8.1 SINGLE LINE-TO-GROUND FAULT USING Zyys

Consider a fault between phase a and ground through an impedance Z; at bus k as
shown in Figure 10.21. The line-to-ground fault requires that positive-, negative-,
and zero-sequence networks for phase a be placed in series in order to compute the
zero-sequence fault current as given by (10.62). Thus, in general, for a fault at bus
k, the symmetrical components of fault current is

_ Vi (0)
Mz + 28 ¥ 20 + 32,

(10.90)

where Zj;., Z{,., and Z) are the diagonal elements in the k axis of the correspond-
ing bus impedance matrix and V(0) is the prefault voltage at bus k. The fault phase
current is

Ifte = ATV (10.91)
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Bus £ of network

FIGURE 10.21
Line-to-ground fault at bus k.

10.8.2 LINE-TO-LINE FAULT USING Zy,,,

Consider a fault between phases b and ¢ through an impedance Z at bus k as
shown in Figure 10.22,

Bus & of network

FIGURE 10.22
Line-to-line fault at bus k.

The phase a sequence network of Figure 10.13 is applicable here, where the
positive- and negative-sequence networks are placed in opposition. The symmet-
rical components of the fault current as given from (10.68), (10.71), and (10.75)
are

=0 (10.92)
Vi(0)

Li=-I}=

(10.93)

where Z,%k, and Z,%k are the diagonal elements in the k axis of the corresponding
bus impedance matrix. The fault phase current is then obtained from (10.91).
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10.8.3 DOUBLE LINE-TO-GROUND FAULT USING Z;,,,

Consider a fault between phases b and ¢ through an impedance Z ¢ to ground at bus
k as shown in Figure 10.23.

Bus k of network

FIGURE 10.23
Double line-to-ground fault at bus k.

The phase a sequence network of Figure 10.15 is applicable here, where the
positive-sequence impedance is placed in series with the parallel combination of
the negative- and zero-sequence networks. The symmetrical components of the
fault current as given from (10.86)—(10.88) are

Vi(0)

Zl + Z,fk(Z,?k+3Zf)
2 - tj
kk b 2R+ Z0, +3Z5

_Vi(0) - Z}, I}

Il = (10.94)

(10.95)

_Vk(0) - Z}, I

I§ =

(10.96)

where Z},, and ZZ,, and ZJ, are the diagonal elements in the k axis of the cor-
responding bus impedance matrix. The phase currents are obtained from (10.91),
and the fault current is

I(F) = I8 + I (10.97)
10.84 BUS VOLTAGES AND
LINE CURRENTS DURING FAULT

Using the sequence components of the fault current given by the formulas in (10.54),
the symmetrical components of the ith bus voltages during fault are obtained

V(F)=0-Z31}
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VMF) = VX 0) - Z} I} (10.98)
VA(F) =0~ Z3LI}

where V1(0) = V;(0) is the prefault phase voltage at bus 4. The phase voltages
during fault are

‘/iabc — A‘/i012 (10.99)
The symmetrical components of fault current in line < to j is given by

VR(F) = VO(F)

0

%= 5
]

VA(F) - VM(F

1L = ( )z.l. i (F) (10.100)
ij

. VAF) - VAF)

I = =

ij
where z?j, z}j, and zfj, are the zero-, positive-, and negative-sequence components
of the actual line impedance between buses 7 and j. Having obtained the symmet-

rical components of line current, the phase fault current in line % to j is
Ige = AP (10.101)
Example 10.6

Solve Example 10.5 using the bus impedance matrix. In addition, for each type of
fault determine the bus voltages and line currents during fault.

Using the function Zbus = zbuild(zdata), Z}, , and Z,; are found for the positive-
sequence network of Figure 10.17 and the zero-sequence network of Figure 10.19.
The positive-sequence bus impedance matrix is

© §0.1450  §0.1050 50.1300 ]
Zi,. = | j0.1050 30.1450 0.1200
| j0.1300 50.1200 §0.2200 |

and the zero-sequence bus impedance matrix is

© j0.1820 50.0545 50.1400 T
Z9,. = | j0.0545 0.0864 40.0650
| j0.1400 0.0650 §0.3500 |

Since positive- and negative-sequence reactances for the system in Example 10.5
are identical, Z},, = Z2,..
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(a) Balanced three-phase fault at bus 3 through a fault impedance Z r=30.1.

The symmetrical components of fault current is given by

0 0 0

1 ,
RY(F) = ZL+Z; | = J"o.221+j0.1 = [ —336125

0 0

The fault current is
11 1 0 3.125/-90°
IFy=|1 a® a —73.125 | = | 3.125/150°
1 a o 0 3.125/30°

For balanced fault we only have the positive-sequence component of voltage. Thus
from (10.98), bus voltages during fault for phase a are

k4

Vi(F) = 1— Z313(F) = 1 ~ j0.13(—33.125) = 0.59375
Vo(F) = 1= ZpI3(F) = 1~ j0.12(—53.125) = 0.62500
V3(F) = 1— Z33I3(F) = 1 — §0.22(—53.125) = 0.31250

Fault currents in lines for phase a are

_ Va(F) = Vi(F) _ 0.62500 — 0.59375 .
In(F) = Y = 70125 = 0.2500£—90
Lis(F) = Vi(F) ~ Va(F) _ 0.5937§ - 031250 _ 875/ —00°

2%3 70.15
Is(F) = Va(F) — V3(F) _ 0.62509 - 031250 _ 125./-50°
235 70.25

(b) Single line-to-ground fault at bus 3 through a fault impedance Z; = j0.1.

From (10.90), the symmetrical components of fault current is given by

1.0
B 1.0 _
 j0.22 4+ 50.22 + j0.35 + j3(0.1)

L(F) = 3(F) = (F) =

—70.9174
The fault current is

11 1 —50.9174 2.7523/—90°
IZF)=1]1 a? a —50.9174 | = 0£0°
1 a

a a? | | —50.9174 0£0°




VOIR(F) =

V(F) =

VIR (F) =

vibe(F) =

VE(F) =

VEe(F) =

012 __
In®=

012 __
hs® =

Pt et Pt e e

[ g Ty

1
a

™

a

e 8], ~

o ], -

[ V2(F)-V2(F) 7]

%12

Vi () =V (F)
%12

VE(F)-V2(F)
L 212

[ V10(F)'V30(F)
%13

V11(F)"V31(F)

2 ‘13 2
V1 (F)_Va (F)
B e B

L %13

[ 0- 2RI
ViH0) — ZL,13
0— Z%13

[ 0-2%19
V3 (0) — Z3,13
0— Z2,I2

[ 0-2Z%13
V3(0) — Z3,13
0-— Z323I§

Bus voltages during fault are

1

]

Q

[ %)

—0.1284 ]
0.8807 | =
—0.1193 |

~0.0596 ]
0.8899 | =
-0.1101 |

~0.3211 ]
0.7982 | =
~0.2018 |

—0.0596—(—0.1284) 1

T 0—0.140(—j0.9174) 7 [
1— j0.130(—40.9174) | =
| 0— j0.130(—50.9174) |

" 0— ;0.065(—50.9174) 7 [
1— j0.120(—50.9174) | =
| 0— 50.120(—50.9174) |

C 0 — 0.350(—50.9174) 7 [
1 - j0.220(—50.9174) | =
| 0 — j0.220(—50.9174) |

T 0.633/0°
1.0046/—120.45°
| 1.0046/+120.45°

T 0.720740°
0.9757/—117.43°
| 0.9757/+117.43°

T 0.2752/0°
1.0647/—125.56°
| 1.0647/+125.56°

The symmetrical components of fault currents in lines for phase a are

70.3
0.8899--0.8807)

0.125

0.
—0.1101—(—0.1193)

70.125

—0.1284—(—0.3211)

-

j0.35
0.8807—0.7982)

0.15

Ju.
—0.1193—(—0.2018)

70.15
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From (10.98), the symmetrical components of bus voltages during fault are

—0.1284 ]
0.8807
-0.1193 |

—0.0596 ]
0.8899
-0.1101 |

—0.3211 ]
0.7982
~0.2018 |

0.2294/-90°
= | 0.0734/-90°
0.0734/-90°

0.5505£-90°
= | 0.5505/-90°
0.5505£—-90°
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0 _yo
V() -V5(F) —0.0596—(—0.3211)

233 50.7125 0.3670£-90°
Ig§2 . Vzl(F)‘Vsl(F) — 0.8899-0.7982) 0.3670/—90°
= = 70.25 :
V2 (F;-2—3V32 (F) —0.1101‘—(—0.2018) 0.3670/-90°
“—zg;——— 70.25
The line fault currents are
(1 1 1 7 [ 0.2294/-90° T F 0.3761£-90° T
IZF)=11 a? a 0.0734£-90° 0.1560£—90°
| 1 a a® ] [ 0.0734/-90° | | 0.1560/—-90° |
(1 1 1 7 [ 0.5505/—90° T [ 1.6514/—90° ]
IZ(F)=1]1 a? a 0.5505/—90° | = 0
|1 a a? | | 0.5505/-90° | | 0 A
1 1 1 77 0.3670/—90° ] [ 1.1009/-90° T
IZFY=|1 a? a 0.3670£—90° | = 0
|1 e a2 ] [ 0.3670/—90° | i 0 A

(¢) Line-to-line fault at bus 3 through a fault impedance Z; = j0.1.

From (10.92) and (10.93), the symmetrical components of fault current are
I2=0
V3(0) 1

Il=—12= = - - T =—‘1.8519
8T TS T ZL ¥ ZL,+Z;  j022+4022+501 Y

0
= | —3.2075
3.2075

From (10.98), the symmetrical components of bus voltages during fault are

The fault current is

11 1 0
IFy=|1 a® a —41.8519
1 a a2 41.8519

£ R

T 0 0
VP2(F) = | Vi0) - z41} | = | 1 - 0.130(—51.8519) } = [ 0.7593 }
0 ZLI2 | 0-—0.130(51.8519) 0.2407
i 0 1 T 0 0
VRR(F) = | V&(0)~ 241} | = | 1—-30.120(—j1.8519 | = | 0.7778
0— ZZ4I% | 0 — 50.120(51.8519) 0.2222
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0 0 0
VRI3(F) = | Vi0) - ZL1} } = [ 1 — 50.220(—41.8519) } = [0.5926 }

0— 2312 0 — 50.220(;j1.8519) 0.4074

Bus voltages during fault are

11 1 0 1£0°
VE&(F)=|1 o® a 0.7593 | = | 0.672/-138.07°
1 a a® ]| 0.2407 0.672/+138.07°
11 117 o 71 T 1£0° 7
VF)=|1 a? a 0.7778 | = | 0.6939/-136.10°
|1 o o2 ] [02222] [ 0.6939/+136.10° |
11 17 o0 1 T 1£0° T
VE&F)=|1 a® a 0.5926 | = | 0.5251/-162.21°
|1 a a2} [ 04074 ] [ 05251/+162.21° |

The symmetrical components of fault currents in lines for phase a are

r -

0
0 0
V3 (F)-ViH(F) _
18%2 — ._'2_._;}2_1____.. — 0.777%.102.g593! _ 0.148/ —90°
VZ(F)-V2(F) 0.22%2°-0.2407 0.148/+90°
] 7, | 70.125
- 0 -
0 0 .
Vi (F)-Vi(F) _
02 = | S | = | LIRS ) 111114-90°
V2(F)-V2(F) 0‘24077—0.4074 1.111 o
1 3 1/+490
=z | 7015
- 0 1
0 0
V) (F)-VA(F) v
192 — 2 T 3 _ 0.77730. 205.5926 — | o407/ —00°
VZ(F)-V2(F) 0.2227?0—201)5.4074 0.7407/+490°
70.
%23 d

The line fault currents are

11 1 0 0
IR =|1 a* a 0.148/-90° | = | —0.2566

1 a d? 0.148 0.2566
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11 1 0 0
IZF)=1|1 a® a } [1.1111[—90° } = [ —1.9245}
- 1 a a 1.1111Z490° 1.9245

11 1 0 0
Ig(F) = l1 a? a ] [0.74071—90" } = [ —1.283}

1 a a? 0.7407/+90° 1.283

(d) Double line-to-ground fault at bus 3 through a fault impedance Z 7 =70.1.

From (10.94)~(10.96), the symmetrical components of fault current is given by

V3(0) 1 ,

= = — e = —2,6017
Z2,(29.+32 . 70.22(50.35+50.3)

Z3+ 7;:—:%;3% J0.22 + S asiios
Va(0) — Z3I3, 11— 50.22(—52.6017) |
I =- — = j1.94
3 ZZ, 0.2 J1.9438
— ZL1L — 70.22(—72.

The phase currents at the faulted bus are

11 1 §0.6579 0
I$F)=|1 a® a —52.6017 | = | 4.0583/165.93°
1 a a? 71.9438 4.0583/14.07°

and the total fault current is
Ig + IS = 4.0583/165.93° — 4.0583/14.07° = 1.9732/90°

From (10.98), the symmetrical components of bus voltages during fault are

[ 0-2Z%13 1 [ 0-—30.140(;0.6579) 0.0921
VPR(F) = | Vi{0) - ZLI} | = | 1-30.130(—;52.6017) | = | 0.6618
0-2z%12 | | 0-;0.130(j1.9438) 0.2527
[ 0-Z%I3 7 [ 0-;0.065(0.6579) 0.0428
VRR(F)= | Vi0) - ZLI | = | 1-30.120(—52.6017 | = | 0.6878
0-2%IZ | | 0-—30.120(j1.9438) 0.2333
[ 0-2Z%I3 1 [ 0-350.350(0.6579) 0.2303
VR (F)= | V}0) -z} | = | 1-0.220(—72.6017) | = | 0.4276
0-23%12 | | 0-350.220(51.9438) 0.4276
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Bus voltages during fault are

1 1 1777009217 [ 10066/0° ]
VE(F)y=1|1 a® a 0.6618 | = | 0.5088/—135.86°
1 a a? ] {02527 ] | 0.5088/+135.86° |
F1 1 177004287 [  09638/0° ]
VE(F)=|1 a? a 0.6878 | = | 0.5740/—136.70°
|1 a a®] 102333 ) | 0.5740/+136.70° |
11 1 0.2303 1.0855£0°
VEF)=|1 a? a 0.4276 | = | 0.1974/180°
1 a o] | 04276 0.1974/4180°

The symmetrical components of fault currents in lines for phase a are

F VF)-V(F) T - -
_l.l_zzgll____ 0.0921_5'(3).0428 C 0.1645/ —90° |
Vi (F)-V,(F o
o2 = | Y )lez( ) | = %5637_) = | 0.2081Z+90
VZ(FL_VZ(F) i 9_2__5%%_%@ | i 01555[—900 |
. 12 e
[ V2(FR)-VF) T
1 133 - 0.0921-0.2303 - " 0.3947/+90° |
02 = Vl‘(F)z—Va‘__(F ) | = 9@-21;8—% = | 1.5610/—90°
V12(F)13V32(F) i %%_42:@ ] i 11663[""900 ]
L %13 . '
V2(F)-V{(F)
—2——0—3—‘” - %"2—5@3 0.2632/+90°
192 = (F)-Vi(F) | _ | 0.6878-0.4276 1.0407/—-90°
N 0.2385-0.4276 0.7775/+90°
23

The line fault currents are

' 1 1 1 0.1645/—90° 0.1118/-90°
IE(F) = a 0.2081/+90° | = | 0.3682/-31.21

1 a a? ] | 0.1555/—90° 0.3682/—148.79°
111 0.3947/+90° 0
IZF)=|1 a® a 1.5610/—90° | = | 2.435/165.93°
1 a a? ]| 1.1663/4+90° 2.435/14.07°
1 1.1 0.2632/+90° 0
IBF)=1|1 a® a 1.0407/-90° | = | 1.6233/165.93°
1 a a® ]| 07775/+90° 1.6233/14.07°

441
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10.9 UNBALANCED FAULT PROGRAMS

Three functions are developed for the unbalanced fault analysis. These functions
are are lgfault(zdata0, Zbus0, zdatal, Zbusl, zdata2, Zbus2, V), lifault(zdatal,
Zbusl,zdata2, Zbus2, V), and digfault(zdata0, Zbus0, zdatal, Zbusl, zdata2,
Zbus2, V). lgfault is designed for the single line-to-ground fault analysis, lfault
for the line-to-line fault analysis, and dlgfault for the double line-to-ground fauit
analysis of a power system network. lgfault and digfault require the positive-,
negative-, and zero-sequence bus impedance matrices Zbus0, Zbus1, and Zbus2,
and llifault requires the positive- and negative-sequence bus impedance matrices
Zbusl, and Zbus2. The last argument V is optional. If it is not included, the pro-
gram sets all the prefault bus voltages to 1.0 per unit. If the variable V is included,
the prefault bus voltages must be specified by the array V containing bus num-
bers and the complex bus voltage. The voltage vector V is automatically generated
following the execution of any of the power flow programs.

The bus impedance matrices may be obtained from Zbus0=zbuild(zdata0),
and Zbus1 = zbuild(zdatal). The argument zdatal contains the positive-sequence
network impedances. zdata0 contains the zero-sequence network impedances. Ar-
guments zdata0, zdatal and zdata2 are an e x4 matrices containing the impedance
data of an e-element network. Columns 1 and 2 are the element bus numbers and
columns 3 and 4 contain the element resistance and reactance, respectively, in per
unit. Bus number O to generator buses contain generator impedances. These may
be the subtransient, transient, or synchronous reactances. Also, any other shunt
impedances such as capacitors and load impedances to ground (bus 0) may be in-
cluded in this matrix.

The negative-sequence network has the same topology as the positive-sequence
network. The line and transformer negative-sequence impedances are the same
as the positive-sequence impedances, however, the generator negative-sequence
reactances are different from the positive-sequence values. In the fault analysis
of large power system usually the negative-sequence network impedances are as-

- sumed to be identical to the positive-sequence impedances. The zZero-sequence net-
work topology is different from the positive-sequence network. The Zero-sequence
network must be constructed according to the transformer winding connections of
Figure 10.6. All transformer connections except Y-Y with both neutral grounded
result in isolation between the primary and secondary in the zero-sequence net-
work. For these connections the corresponding resistance and reactance columns in
the zero-sequence data must be filled with inf. For grounded Y-A connections, ad-
ditional entries must be included to represent the transformer impedance from bus
0.to the grounded Y-side. In case the neutral is grounded through an impedance Zy,
an impedance of 3Z,, must be added to the transformer reactance. The reader is re-
minded of the 30° phase shift ina Y-A or A-Y transformer. According to the ASA
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convention, the positive-sequence voltage is advanced by 30° when stepping up
from the low-voltage side to the high-voltage side. Similarly, the negative-sequence
voltage is retarded by 30° when stepping up from low-voltage to the high-voltage
side. The phase shifts due to A-Y transformers have no effect on the bus voltages
and line currents in that part of the system where the fault occurs. However, on the
other side of the A-Y transformers, the sequence voltages, and currents must be
shifted in phase before transforming to the phase quantities. The unbalanced fault
programs presently ignores the 30° phase shift in the A-Y transformers.

The other function for the formation of the bus impedance matrix is Zbus
= zbuildpi(linedata, gendata, yload), which is compatible with the power flow
programs. The first argument linedata is consistent with the data required for the
power flow solution. Columns 1 and 2 are the line bus numbers. Columns 3 through
5 contain the line resistance, reactance, and one-half of the total line charging sus-
ceptance in per unit on the specified MVA base. The last column is for the trans-
former tap setting; for lines, 1 must be entered in this column. The generator re-
actances are not included in the linedata for the power flow program and must be
specified separately as required by the gendata in the second argument. gendata is
an ey X 4 matrix, where each row contains bus 0, generator bus number, resistance
and reactance. The last argument yload is optional. This is a two-column matrix
containing bus number and the complex load admittance. This data is provided by
any of the power flow programs Ifgauss, lfnewton or decouple. yload is automat-
ically generated following the execution of the above power flow programs.

The program prompts the user to enter the faulted bus number and the fault
impedance Zf. The program obtains the total fault current, bus voltages and line
currents during the fault. The use of the above functions are demonstrated in the
following examples.

Example 10.7

Use the Igfault, lifault, and dlgfault functions to compute the fault current, bus
voltages and line currents in the circuit given in Example 10.5 for the following
fault, \

(a) A balanced three-phase fault at bus 3 through a fault impedance Zy = j0.1 per
unit.

(b) A single-line-to-ground fault at bus 3 through a fault impedance Z; = ;0.1 per
unit. '

(c) A line-to-line fault at bus 3 through a fault impedance Zy = j0.1 per unit.

(d) A double line-to-ground fault at bus 3 through a fault impedance Z; = 50.1
per unit. |
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In this example all shunt capacitances and loads are neglected and all the prefaut
bus voltages are assumed to be unity. The positive-sequence impedance diagram in
Figure 10.17 is described by the variable zdatal and the zero-sequence impedance
diagram in Figure 10.19 is described by the variable zdata0. The negative-sequence
data is assumed to be the same as the positive-sequence data. We use the following
commands.

zdatal = [0 1 0. 0.256
0 2 0 0.25
1 2 0 0.125
1 3 0 0.15
2 3 ¢] 0.25];

zdata0 = {0 1 O 0.40
0 2 0 0.10
1 2 0 0.30
1 3 0 0.35
2 3 0 0.7125];

zdata2 = zdatal;

Zbusl = zbuild(zdatal)

Zbus0 = zbuild(zdatal)

Zbus2 = Zbusi;

symfault(zdatal, Zbusi)

lgfault(zdata0, ZbusO, zdatal, Zbusi, zdata2, Zbus2)
l1fault(zdatal, Zbusl, zdata2, Zbus2)
dlgfault(zdata0, ZbusO, zdatal, Zbusi, zdata2, Zbus2)

The result is

Three-phase balanced fault analysis

Enter Faulted Bus No. -> 3

Enter Fault Impedance Zf = R + j*X in

complex form (for bolted fault enter 0). Zf = j*0.1
Balanced three-phase fault at bus No. 3

Total fault current = 3.1250 per unit
Bus Voltages during fault in per unit
Bus Voltage Angle
No. Magnitude Degree
1 0.5938 0.0000
2 0.6250 0.0000
3 0.3125 0.0000

Line currents for fault at bus No. 3
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From To Current Angle

Bus Bus Magnitude Degree
G 1 1.6250 -90.0000
1 3 1.8750 -90.0000
G 2 1.5000 -90.0000
2 1 0.2500 -90.0000
2 3 1.2500 -90.0000
3 F 3.1250 -90.0000

Another fault location?
Enter ’y’ or ’n’ within single quote -> ’n’

Line-to-ground fault analysis

Enter Faulted Bus No. -> 3

Enter Fault Impedance Zf = R + j*X in

complex form (for bolted fault enter 0). Zf = j*0.1
Single line to-ground fault at bus No. 3

Total fault current = 2.7523 per unit

Bus Voltages during the fault in per unit

Bus  --=---- Voltage Magnitude-------

No. Phase a Phase b Phase ¢

1 0.6330 1.0046 1.0046

2 0.7202 0.9757 0.9757

3 0.2752 1.0647 1.0647

Line currents for fault at bus No. 3

From To =-—=- Line Current Magnitude----

Bus Bus Phase a Phase b Phase ¢
1 3 1.6514 0.0000 0.0000
2 1 0.3761 0.1560 0.1560
2 ' 3 1.1009 0.0000 0.0000
3 F 2.7523 0.0000 0.0000

Another fault location?
Enter ’y’ or ’n’ within single quote -> ’n’

Line-to-line fault analysis

Enter Faulted Bus No. -> 3

Enter Fault Impedance Zf = R + j*X in

complex form (for bolted fault enter 0). 2f = j*0.1
Line-to-line fault at bus No. 3

Total fault current = 3.2075 per unit

Bus Voltages during the fault in per unit
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Bus  ------—- Voltage Magnitude-------

No. Phase a Phase b Phase ¢

1 1.0000 0.6720 0.6720

2 1.0000 0.6939 0.6939

3 1.0000 0.5251 0.5251

Line currents for fault at bus No. 3

From To W -==-- Line Current Magnitude----

Bus Bus  Phase a Phase b Phase ¢
1 3 0.0000 1.9245 1.9245
2 1 0.0000 0.2566 0.2566
2 3 0.0000 1.2830 1.2830
3 F 0.0000 3.2075 3.2075

Another fault location?
Enter 'y’ or ’n’ within single quote -> ’n’

Double line-to-ground fault analysis

Enter Faulted Bus No. -> 3

Enter Fault Impedance Zf = R + j*X in

complex form (for bolted fault enter 0). Zf = j*0.1
Double line-to-ground fault at bus No. 3

Total fault current = 1.9737 per unit
Bus Voltages during the fault in per unit
Bus  ------- Voltage Magnitude-------
No. Phase a Phase b Phase ¢
1 1.0066 0.5088 0.5088
2 0.9638 0.5740 0.5740
3 1.0885 0.1974 0.1974
Line currents for fault at bus No. 3
From To  -=--- Line Current Magnitude----
Bus Bus Phase a Phase b Phase ¢
1 3 0.0000 2.4350 2.4350
2 1 0.1118 0.3682 0.3682
2 3 0.0000 1.6233 1.6233
3 F 0.0000 4.0583 4.0583

Another fault location?
Enter ’y’ or ’n’ within single quote -> ’n’

Example 10.8

The 11-bus power system network of an electric utility company is shown in Fig-
ure 10.24. The positive- and zero-sequence reactances of the lines and transform-
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ers in per unit on a 100-MVA base is tabulated below. The transformer connec-
tions are shown in Figure 10.24. The A-Y transformer between buses 11 and 7 is
grounded through a reactor of reactance 0.08 per unit. The generators positive-,
and zero-sequence reactances including the reactance of grounding neutrals on a
100-MVA base is also tabulated below. Resistances, shunt reactances, and loads are
neglected, and all negative-sequence reactances are assumed equal to the positive-
sequence reactances. Use zbuild function to obtain the positive- and Zero-sequence
bus impedance matrices. Assuming all the prefault bus voltages are equal to 1/0°,
use Igfault, ifault, and digfault to compute the fault current, bus voltages, and
line currents for the following unbalanced faults.

(a) A bolted single line-to-ground fault at bus 8.
(b) A bolted line-to-line fault at bus 8.
(c) A bolted double line-to-ground fault at bus 8.

OBER T —A3k0
4 oad EoSp!
OBt ek
£oaf

FIGURE 10.24
One-line diagram-for Example 10.8.

GENERATOR TRANSIENT
IMPEDANCE, PU
Gen.No. X! X0 x,
1 020 0.06 0.05
10 0.15 0.04 0.05
11 0.25 0.08 0.00
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LINE AND TRANSFORMER DATA

Bus Bus X1, X0,

No. No. PU PU
1 2 0.06 0.06
2 3 0.30 0.60
2 5 015 0.30
2 6 0.45 0.90
3 4 0.40 " 0.80
3 6 040 0.80
4 6 060 1.00
4 9 0.70 1.10
4 10 0.08 0.08
5 7 043 0.80
6 8 0.48 0.95
7 8 0.35 0.70
7 11 0.10 0.10
8 9 0.48 0.90

The equivalent circuit for the zero-sequence network is constructed according to
the transformer winding connections of Figure 10.6 and is shown in Figure 10.25.

2

j0.60 3Tt j0.80 4 §0.08 110

- j0.04
j0.15

50.80
1.0

§1.1
70.80 40.95
7 9
11 o
o I j0.70 8 4+  j0.90 -!
JY-Y%40.10
T j0.24
FIGURE 10.25

Zero-sequence network for Example 10.8.

When using zbuild function, the generator reactances must be included in the
impedance data with bus zero as the reference bus.

The A-Y transformers result in isolation between the primary and secondary
in the zero-sequence network. For these connections inf is entered in the corre-
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Y-Aconnections, additional entries are included to Tepresent the transformer imped-
ance from bus 0 to the grounded Y-side. The generators and transformers neutral
reactor are included in the zero-sequence circuit each with a reactance of 3X,.

The positive- and Zero-sequence impedance data and the required commands are
as follows,

zdatal = [ ¢ 1 0.00 0.20
0 10 0.00 0.15
0 11 0.00 0.25
1 2 0.00 0.06
2 3 0.00 0.30
2 5 0.00 0.15
2 6 0.00 0.45
3 4 0.00 0.40
3 6 0.00 0.40
4 6 0.00 0.60
4 9 0.00 0.70
4 10 0.00 0.08
5 7 0.00 0.43
6 8 0.00 0.48
7 8 0.00 0.35
7 11 0.00 0.10
8 9 0.00 0.48];

zdata0 = [ o 1 0.00 0.06+3%0.05
0 10 0.00 0.04+3%0.05
0 11 0.00 0.08
0 2 0.00 0.06
0 7 0.00 0.10+3%.08
1 2 inf inf
2 3 0.00 0.60
2 5 0.00 0.30
2 6 0.00 0.90
3 4 0.00 0.80
3 6 0.00 0.80
4 6 0.00 1.00
4 9 0.00 1.10
4 10 0.00 0.08
5 7 0.00 0.80
6 8 0.00 0.95
7 8 0.00 0.70
7 11 inf inf
8 9 0.00 0.90]
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zdata2=zdatal; -
7bus0 = zbuild(zdatal) a
7busl = zbuild(zdatal) 1

Zbus2 = Zbusl;

lgfault(zdataO, Zbus0, zdatal, Zbusl, zdata2, Zbus2)
11fault(zdatal, 7busl,zdata2, Zbus2)

dlgfault(zdatao, Zbus0, zdatal, Zbusl, zdata2, Zbus?2)

nou

The result is

Line-to-ground fault analysis

Enter Faulted Bus No. -2 8

Enter Fault Impedance Zf = R + j*X in

complex form (for bolted fault enter 0). Zf = 0
Single line to-ground fault at bus No. 8

Total fault current = 2.8135 per unit

Bus Voltages during the fault in per unit

Bus  ——-——~ Voltage Magnitude-------

No. Phase a Phase b Phase C

1 0.8907 0.9738 0.9738

2 0.8377 0.9756 0.9756

3 0.7451 0.9954 0.9954

4 0.7731 1.0063 1.0063

5 0.7824 0.9823 0.9823

6 0.5936 1.0123 1.0123

7 0.6295 0.9995 0.9995

8 0.0000 1.0898 1.0898

9 0.3299 1.0453 1.04563

10 0.8612 0.9995 0.9995

i1 0.8231 0.9588 0.9588

Line currents for fault at bus No. 8

From To -————~ Line Current Magnitude----

Bus Bus Phase a Phase b Phase ¢
1 2 0.5464 0.2732 0.2732
2 3 0.2113 0.0407 0.0407
2 6 0.3966 0.0207 0.0207
3 6 0.2877 0.0073 0.0073
4 3 0.0764 0.0479 0.0479
4 6 0.2540 0.0255 0.0255
4 9 0.5311 0.0023 0.0023
5 2 0.2753 0.0023 0.0023
6 8 0.9383 0.0121 0.0121
7 5 0.2753 0.0023 0.0023
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7 8 1.3441 0.0098 0.0098
8 F 2.8135 0.0000 0.0000
9 8 0.5311 0.0023 0.0023
10 4 0.8615 0.0711 0.0711
11 7 0.7075 0.3538 0.3538

Another fault location?
Enter ’y’ or ’n’ within single quote -> ’n’

Line-to-line fault analysis

Enter Faulted Bus No. -> 8

Enter Fault Impedance Zf = R + j*X in

complex form (for bolted fault enter 0). Zf = 0
Line-to-line fault at bus No. 8

Total fault current = 2.9060 per unit

Bus Voltages during the fault in per unit

Bus  ------- Voltage Magnitude-------

No. Phase a Phase b Phase ¢

1 1.0000 0.8576 0.8576

2 1.0000 0.8168 0.8168

3 1.0000 0.7757 0.7757

4 1.0000 0.8157 0.8157

5 1.0000 0.7838 0.7838

6 1.0000 0.6871 0.6871

7 1.0000 0.6947 0.6947

8 1.0000 0.5000 0.5000

9 1.0000 0.5646 0.5646

10 1.0000 0.8778 0.8778

11 1.0000 0.7749 0.7749

Line currents for fault at bus No. 8

From To  -—- Line Current Magnitude----

Bus Bus Phase a Phase b Phase ¢
1 2 0.0000 0.8465 0.8465
2 3 0.0000 0.1762 0.1762
2 5 0.0000 0.2820 0.2820
2 6 0.0000 0.3883 0.3883
3 6 0.0000 0.3047 0.3047
4 3 0.0000 0.1285 0.1285
4 6 0.0000 0.2887 0.2887
4 9 0.0000 0.5461 0.5461
5 7 0.0000 0.2820 0.2820
6 8 0.0000 0.9817 0.9817
7 8 0.0000 1.3782 1.3782
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8 F 0.0000 2.9060 2.9060
9 8 0.0000 0.5461 0.5461
10 4 0.0000 0.9633 0.9633
11 7 0.0000 1.0962 1.0962
Another fault location?

Enter ’y’ or ’n’ within single quote -> ’n’

Double line-to-ground fault analysis

Enter Faulted Bus No. -> 8

Enter Fault Impedance Zf = R + j*X in

complex form (for bolted fault enter 0). Zf = 0
Double line-to-ground fault at bus No. 8

Total fault current = 2.4222 per unit

Bus Voltages during the fault in per unit

Bus  ---—-—- Voltage Magnitude-------

No. Phase a Phase b Phase ¢

1 0.9530 0.8441 0.8441

2 0.9562 0.7884 0.7884

3 0.9919 0.7122 0.7122

4 1.0107 0.7569 0.7569

5 0.9686 0.7365 0.7365

6 1.0208 0.5666 0.5666

7 0.9992 0.5907 0.5907

8 1.1391 0.0000 0.0000

9 1.0736 0.3151 0.3151

10 0.9991 0.8455 0.8455

11 0.9239 0.7509 0.7509

Line currents for fault at bus No. 8

From To - Line Current Magnitude----

Bus Bus Phase a Phase b Phase ¢
1 2 0.2352 0.8546 0.8546
2 3 0.0350 0.2069 0.2069
2 5 0.0020 0.3063 0.3063
2 6 0.0178 0.4278 0.4278
3 6 0.0063 0.3277 0.3277
4 3 0.0413 0.1290 0.1290
4 6 0.0220 0.3050 0.3050
4 9 0.0020 0.5924 0.5924
5 7 0.0020 0.3063 0.3063
6 8 0.0104 1.0596 1.0596
7 8 0.0084 1.4963 1.4963
8 F 0.0000 3.1483 3.1483
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9 8 0.0020 0.5924 0.5924
10 4 0.0612 1.0217 1.0217
11 7 0.3046 1.1067 1.1067

Another fault location?
Enter ’y’ or ’n’ within single quote -> ’n’

PROBLEMS

10.1. Obtain the symmetrical components for the set of unbalanced voltages V,, =
300£~120°, V = 200£90°, and V, = 100/—30°.

10.2. The symmetrical components of a set of unbalanced three-phase currents are
I? = 3/-30°, I! = 5/90°, and I2 = 4/30°. Obtain the original unbal-
anced phasors.

10.3. The operator a is defined as a = 1/120°; show that

@ i = 1/120°

1—a)?
(b) iTa)? = 3/-180°
(c) (a — a?)(a® — a) = 3/0°
(d) Van = 5V £90°
© Von = 75Vl —90°
10.4. The line-to-line voltages in an unbalanced three-phase supply are V,;, =
1000£0°, Vpe = 866.0254/—150°, and V,, = 500/120°. Determine the
symmetrical components for line and phase voltages, then find the phase
voltages V., Vi, and V,.

10.5. In the three-phase system shown in Figure 10.26, phase a is on no load and
phases b and c are short-circuited to ground.

I,=0

—

FIGURE 10.26
Circuit for Problem 10.5.
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The following currents are given:

I, = 91.65/160.9°

I, = 60.00£90°

Find the symmetrical components of current I?, I}, and IZ.

10.6. A balanced three-phase voltage of 360-V line-to-neutral is applied to a bal-
anced Y-connected load with ungrounded neutral, as shown in Figure 10.27.
The three-phase load consists of three mutually-coupled reactances. Each
phase has a series reactance of Z; = j24 €, and the mutual coupling be-
tween phases is Z,, = j6 .
(a) Determine the line currents by mesh analysis without using symmetrical
components.
(b) Determine the line currents using symmetrical components.
Oo— Ia
+
o b,
+
Vi
a Ic

o—

FIGURE 10.27
Circuit for Problem 10.6.

10.7.

A three-phase unbalanced source with the following phase-to-neutral volt-

ages
300 /-—-120°

vebe — | 200 £90°
100 /-30°

is applied to the circuit in Figure 10.28. The load series impedance per phase
is Z; = 10 + 540 and the mutual impedance between phases is Z,, = j5.
The load and source neutrals are solidly grounded. Determine

(a) The load sequence impedance matrix, Z%12 = A~1ZabcA

(b) The symmetrical components of voltage.

(c) The symmetrical components of current.

(d) The load phase currents.
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I, 10+ 540
o e I\/V\/(Z_rvm____
+
s 1
I, 10+ 540 75 l
+ . I
Va . _75 J n
IQ 10+]40}
Vo +
_ Y
” <
FIGURE 10.28

Circuit for Problem 10.7.

10.8.

10.9.

(e) The complex power delivered to the load in terms of symmetrical com-
ponents, Sz = 3(VOIO* + V111" 4 V212*),

(f) The complex power delivered to the load by summing up the power in
each phase, S34 = VI + Vi Iy + V,I}.

The line-to-line voltages in an unbalanced three-phase supply are Vg, =
600£36.87°, V. = 800/126.87°, and V,, = 1000/—90°. A Y-connected
load with a resistance of 37 € per phase is connected to the supply. Deter-
mine

(a) The symmetrical components of voltage.

(b) The phase voltages.

(c) The line currents.

A generator having a solidly grounded neutral and rated 50-MVA, 30-kV has
positive-, negative-, and zero-sequence reactances of 25, 15, and 5 percent,
respectively. What reactance must be placed in the generator neutral to limit
the fault current for a bolted line-to-ground fault to that for a bolted three-
phase fault?

10.10. What reactance must be placed in the neutral of the generator of Problem 9

to limit the magnitude of the fault current for a bolted double line-to-ground
fault to that for a bolted three-phase fault?

10.11. Three 15-MVA, 30-kV synchronous generators A, B, and C are connected

via three reactors to a common bus bar, as shown in Figure 10.29. The neu-
trals of generators A and B are solidly grounded, and the neutral of generator
C is grounded through a reactor of 2.0 2. The generator data and the reac-
tance of the reactors are tabulated below. A line-to-ground fault occurs on
phase a of the common bus bar. Neglect prefault currents and assume gen-
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erators are operating at their rated voltage. Determine the fault current in
phase a.

Gy G G

REACTOR

FIGURE 10.29
Circuit for Problem 10.11.
Item X1 X2 X0

Ga 0.25pu 0.155pu 0.056 pu
Gs 020 pu 0.155pu 0.056 pu
Gc 020 pu 0.155pu 0.060 pu
Reactor 6.0 Q2 60 ©Q 6.0 Q

10.12. Repeat Problem 10.11 for a bolted line-to-line fault between phases b and c.

10.13. Repeat Problem 10.11 for a bolted double line-to-ground fault on phases b
and c. —

10.14. The zero-, positive-, and negative-sequence bus impedance matrices for a
three-bus power system are

0.20 0.05 0.12
Zy,,=37] 005 010 0.08 | pu
0.12 0.08 0.30

0.16 0.10 0.15
Zis=7Z%,,=37] 010 020 0.12 | pu
0.15 0.12 0.25

Determine the per unit fault current and the bus voltages during fault for
(a) A bolted three-phase fault at bus 2.

(b) A bolted single line-to-ground fault at bus 2.

(c) A bolted line-to-line fault at bus 2.

(d) A bolted double line-to-ground fault at bus 2.
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10.15. The reactance data for the power system shown in Figure 10.30 in per unit
on a common base is as follows:

Item Xt x2 Xx©
e 0.10 0.10 0.05
Gy 0.10 0.10 0.05
Ty 025 025 025
T, 025 025 0.25

Line 1-2 030 030 0.50

:3 Tlg—m—;—g {]—T—D—3T24:
& b &P 4

FIGURE 10.30
Circuit for Problem 10.15.

Obtain the Thévenin sequence impedances for the fault at bus 1 and compute
the fault current in per unit for the following faults:

(a) A bolted three-phase fault at bus 1.

(b) A bolted single line-to-ground fault at bus 1.
(c) A bolted line-to-line fault at bus 1.

(d) A bolted double line-to-ground fault at bus 1.

10.16. For Problem 10.15, obtain the bus impedance matrices for the sequence
networks. A bolted single line-to-ground fault occurs at bus 1. Find the fault
current, the three-phase bus voltages during fault, and the line currents in
each phase. Check your results using the zbuild and Igfault programs.

10.17. Repeat Problem 10.16 for a bolted line-to-line fault. Check your results
using the zbuild and lfault programs.

10.18. Repeat Problem 10.16 for a bolted double line-to-ground fault. Check your
results using the zbuild and digfault programs.

10.19. The positive-sequence reactances for the power system shown in Figure
10.31 are in per unit on a common MVA base. Resistances are neglected
and the negative-sequence impedances are assumed to be the same as the
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positive-sequence impedances. A bolted line-to-line fault occurs between
phases b and c at bus 2. Before the fault occurrence, all bus voltages are
1.0 per unit. Obtain the positive-sequence bus impedance matrix. Find the
fault current, the three-phase bus voltages during fault, and the line currents
in each phase. Check your results using the zbuild and Iifault programs.

T 1 . 2 T3
" - ]06 "
X;=30.05 j0.15 §0.05 X =30.05
3 0.3 4
4 <4 A 4
FIGURE 10.31

Circuit for Problem 10.19.

10.20. Use the Igfault, lifault, and dlgfault functions to compute the fault current,
bus voltages, and line currents in the circuit given in Example 10.8 for the
following unbalanced fault,

(a) A bolted single line-to-ground fault at bus 9.
(b) A bolted line-to-line fault at bus 9.
(c) A bolted double line-to-ground fault at bus 9.

All shunt capacitances and loads are neglected and the negative-sequence
data is assumed to be the same as the positive-sequence data. All the prefault
bus voltages are assumed to be unity.

10.21. The six-bus power system network of an electric utility company is shown
in Figure 10.32. The positive- and zero-sequence reactances of the lines and
transformers in per unit on a 100-MVA base is tabulated below.

LINE AND TRANSFORMER DATA
Bus Bus X1, X°
No. No. PU PU

1 4 0.225 0.400

1 5 0.105 0.200

1 6 0.215 0.390

2 4 0.035 0.035

3 5 0.042 0.042

4 6 0.125 0.250

5 6 0.175 0.350
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FIGURE 10.32
One-line diagram for Problem 10.32.

The transformer connections are shown in Figure 10.32. The A-Y trans-
former between buses 3 and 5 is grounded through a reactor of reactance 0.10
per unit. The generator’s positive- and zero-sequence reactances including
the reactance of grounding neutrals on a 100-MVA base is tabulated below.

GENERATOR TRANSIENT
IMPEDANCE, PU

Gen.No. X! X0 X,
1 020 0.06 0.00
2 0.15 0.04 0.05
3 0.25 0.08 0.00

Resistances, shunt reactances, and loads are neglected, and all negative-
sequence reactances are assumed equal to the positive-sequence reactances.
Use zbuild function to obtain the positive- and zero-sequence bus impedance
matrices. Assume all the prefault bus voltages are equal to 1£0°, use lgfault,
lifault, and digfault to compute the fault current, bus voltages, and line cur-
rents for the following unbalanced faults.

(a) A bolted single line-to-ground fault at bus 6.
(b) A bolted line-to-line fault at bus 6.
(c) A bolted double line-to-ground fault at bus 6.




CHAPTER

11

STABILITY

11.1 INTRODUCTION

The tendency of a power system to develop restoring forces equal to or greater than
the disturbing forces to maintain 